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Topological Phases of Matter

>

States of matter that are not described by the Landau's
theory of phase transitions.

Bulk-edge correspondence.

Topological band theory:
quantum numbers (Z, Zy, etc.) are related to Chern,
Stiefel-Whitney, Dixmier-Douady classes, etc.

Several fermion models in the lattice can be described by
effective Dirac Hamiltonians.

Quantum field theory:

in the low-energy regime, topological (Chern-Simons, BF,
etc.) and conformal field theories describe their bulk and edge
states, respectively.
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Topologically protected massless edge modes:
Dirac fermions in Tls and Majorana fermions in TSCs



2D QHE, QSHE and QVHE
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Valley = fermion doubling
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Abelian Berry Connection

Bloch wave-vector: |u(k)) = (ut(k), u?(k), ..., uR(k)) .

The gauge redundancy in a non-degenerate Bloch state is encoded
in the arbitrary phase in |u)

|u) = e W]u),

where a(k) is a momentum-dependent function.

We can build an Abelian gauge connection in momentum space as
follows

AJ' = i<u|8j|u>, Aj — AJ' - 8j0[

with J; = Oy, while the gauge-invariant Berry curvature is given by

Fi = 0;Ak — OkA;.



Haldane model and first Chern number

Each valley can be described in terms of an effective massive Dirac
Hamiltonian:
Hyy = keo™ + kyo¥ + myo®,

where k = (k, k,) are the momenta, m is a mass term and oY%
are the Pauli matrices.
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Spin Hall insulator and first spin Chern number

Bernevig-Hughes-Zhang Hamiltonian
(Bernevig, Hughes, Zhang, Science 2006).

_ Hy  gox
HBHZ—(gO_X H ),

The g describes the band coupling strength and this coupling term
between blocks. Here, we assume g =~ 0.

Each pseudospin has an independent Chern number Cl+ and (.
The time-reversal symmetry gives rise to a vanished total Chern
number, i.e. C1+ + G =0.

The difference is not zero:
C = (Cfr - ()2

Cold-atom implementation, see Q.-X. Lv at al., PRL 2021.



Non-Abelian Berry connections

In the case of N-degenerate bands, the Abelian Berry connections
are replaced by the SU(N) or U(N) Non-Abelian versions:
(Wilczek and Zee, PRL 1984).

A)-’b = i(u®|0;|u®).
Curvature tensor:
Fij = 0iA; — 0jA; — i[A;, Aj].
Under gauge transformations |u) — U|u) we have that
Fij — UF;U,

where U is a Lie-algebra-valued matrix.

The Wilson line operator W is defined as W="7P exp(ifkk_f A - dk).



Second Chern number

The second Chern number G, plays a central role in the 4D QHE
and 4D Chern insulators.

1
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where the first Brillouin zone is now a four-dimensional torus T#
spanned by k = (k, ky, k2, k).

e XY (au)

Cold-atom implementation: see H. Price at al., PRL 2015 and M. Lohse
at al., Nature 2018.



Chern-Simons theory in the 2D QHE

U(1) Chern-Simons theory in the IQHE

v
Scs = 47T/d3x e‘”’)‘AuayA,\

» Quantized Hall conductivity with filling factor v
» Bulk-edge correspondence: CSy41/CFT141
> Physical observables: (W;) = (expi § A)
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(a) Quantum Hall Effect (b) Hall conductivity



Axion electrodynamics in 3D Tls

Axion Electrodynamics describes the topological response of 3D
topological insulators (Tls) (Qi, Hughes, Zhang, PRB 2008).
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For standard insulators 8 = 0 while for Tls § = .

Gapped boundary states support an half-integer QHE:
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Mixed Chern-Simons theory in the 2D QSHE

(£)

Each 2D block system is coupled to a gauge field A, and gives
rise to a corresponding Abelian Chern-Simons theory,
Ci
Sgsi) = —1 / d3xe“”’\Afti)6,,AE\i).
By taking A, = A A — Al= )] =1 [ +) 4 A(_)], we obtain

G o
Ss,eff = 5 d>xet )\Auaz/A)\a

with G = CF — C; .
Currents:

C. . = C.

= A AN, T = 20, A

2w 2w
We here pick the gauge

A, =(0,0,—tE)), A, =0,
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4D model and Dirac-like Hamiltonian

Y.-Q. Zhu, Z. Zheng, G. P., Z. D. Wang, PRL (2022)

HO(k) = dxrl + dyr2 + dzr3 + dwr4 + dmr07
where the Bloch vector
di =sink;,d,=m— Zcos ki,

with i = x, vy, z, w. The 8 x 8 matrices I'; satisfy the Clifford
algebra. This system hosts two bands with the spectrum,

Ei:i\/d§+d3+dz2+d§v+d,2n,

where each band has four-fold degeneracy.



Band structure and bulk-edge correspondence

Dirac Weyl
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Second spin Chern number

This model preserves the CP-symmetry, i.e., {CP,Ho} = 0, with
CP = G112 satisfies (CP)2 = —1, with G,'J'k =0i®0ojQok.

Hpp = UHoU ™' = Hy @ H_,

where each block Hamiltonian is given by

H+(k) = dxGio £ dyGo1 F d;Go3 F dy, G22 + diy Gao,
with Gj = 0; ® 0.
= [ wrtaFt
2 872 T4 ’
with the values Ci = +3sgn(m) for 0 < |m| < 2, Cif = Fsgn(m)

for 2 < |m| < 4, and Cf = 0 elsewhere.

Cos = (G — G)/2.



Higher Second Chern number




4D QSHE

0 _ &7
eff — 247‘(‘2

where a = + for each block. We define two new gauge fields as

d5x eﬂuApaAELa)aVAg\a)apAga),

A, = % (A + 4D A, = % (4G — A

C25

Seff = / d®xe" 7 4,0, A\D,A,
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we obtain,
C2s

J :O,J :m
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4D QVHE

Similarly to the previous case we have Afli) = A, £ b, where
b, = (bo, b,0) and behaves like a axial gauge field.

C2v
1272

Without loss of generality, we take b, = (bo, b1(y), b2, b3(t),0).
Defining the (pseudo)-magnetic and (pseudo)-electric fields as

B=VxA, E=09A—VA,
B% =V x b, E> = 8;b— Vhy.

Sueff = / d®xe' 7 (3b,0,A\D,As + budy,br0,by) .

We obtain charge and valley currents,

= S (E3B, 1 E.5)
21

w C2V 5 5

B = 5 (E:B: + E2BY)

J§' can be associated to the “4D quantum valley Hall effect’.



Cold-atom implementation
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Since there are eight degrees of freedom in the model Hamiltonian,
a candidate choice is the use of the alkaline-earth-metal atoms.

It has a meta-stable excited-state manifold |e) besides the
ground-state manifold |g), from which we respectively select four
hyperfine states as the pseudo-spins to construct the extra spaces.
In particular, we specify the denotations to pseudo-spins as a =1
and 8 = +. We prepare the eight states are coupled by three
groups of optical fields.



Cold-atom Hamiltonian

Ho = Ao+ HS + HS).
The first part of Hamiltonian describes the local energy of the

atoms and we employ the tight-binding approximation. Hy is then
expressed as

Jj

Here, 1j = (jt+, €jt—, €)1+, €1~ &1+ 8jt—» &i+ &ji—) | and
denotes the atomic annihilation operator on the j-th site.

Hs(g) describes the coupling between the pseudo-spins a =71. Its
form is given as follows,

HES _/erMl { Vet 5(Ng,8(r )+¢Z,¢,g(")wg,T7,3(r)]+H'C-

Finally, Hs(g) describes the coupling between the pseudo-spins

8=+



Conclusions and Outlook

> | have presented a novel 4D model that supports a quantized
second spin Chern number and topologically protected edge
states.

> | have shown that higher-dimensional mixed Chern-Simons
theories can describe the 4D QSHE and VQHE in our 4D
model in the low-energy regime.

> | have briefly presented a cold-atom implementation of our 4D
Dirac Hamiltonian.

> In future work, we will explore thermal quantum effects in this
4D system that can be probed by introducing an effective
curved background and can be described by
higher-dimensional gravitational Chern-Simons theories.

» We are finalizing a work to implement the second Euler
number in synthetic matter (it will appear on arXiv this
month).



