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Outline

I Topological phases: 2D QHE, QSHE and QVHE

I Abelian and Non-Abelian Berry connections

I Topological quantum field theories

I 4D generalization

I Ultracold-atom implementation



Topological Phases of Matter

I States of matter that are not described by the Landau’s
theory of phase transitions.

I Bulk-edge correspondence.

I Topological band theory:
quantum numbers (Z, Z2, etc.) are related to Chern,
Stiefel-Whitney, Dixmier-Douady classes, etc.

I Several fermion models in the lattice can be described by
effective Dirac Hamiltonians.

I Quantum field theory:
in the low-energy regime, topological (Chern-Simons, BF,
etc.) and conformal field theories describe their bulk and edge
states, respectively.



First-order topological insulators and superconductors

Topologically protected massless edge modes:
Dirac fermions in TIs and Majorana fermions in TSCs



2D QHE, QSHE and QVHE

Edge states:



Valley = fermion doubling



Abelian Berry Connection

Bloch wave-vector: |u(k)〉 = (u1(k), u2(k), ..., uℵ(k))>.

The gauge redundancy in a non-degenerate Bloch state is encoded
in the arbitrary phase in |u〉

|u〉 → e iα(k)|u〉,

where α(k) is a momentum-dependent function.

We can build an Abelian gauge connection in momentum space as
follows

Aj = i〈u|∂j |u〉, Aj → Aj − ∂jα

with ∂j ≡ ∂kj
, while the gauge-invariant Berry curvature is given by

Fjk = ∂jAk − ∂kAj .



Haldane model and first Chern number
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Each valley can be described in terms of an effective massive Dirac
Hamiltonian:

H±2D = kxσ
x + kyσ

y + m±σ
z ,

where k = (kx , ky ) are the momenta, m is a mass term and σx ,y ,z

are the Pauli matrices.

C1 =
1

2π

∫
T 2

dkxdky ε
jkFjk ∈ Z.



Spin Hall insulator and first spin Chern number

Bernevig-Hughes-Zhang Hamiltonian
(Bernevig, Hughes, Zhang, Science 2006).

HBHZ =

(
H+ gσx

gσx H−

)
,

The g describes the band coupling strength and this coupling term
between blocks. Here, we assume g ≈ 0.

Each pseudospin has an independent Chern number C+
1 and C−1 .

The time-reversal symmetry gives rise to a vanished total Chern
number, i.e. C+

1 + C−1 = 0.

The difference is not zero:

Cs = (C+
1 − C−1 )/2.

Cold-atom implementation, see Q.-X. Lv at al., PRL 2021.



Non-Abelian Berry connections

In the case of N-degenerate bands, the Abelian Berry connections
are replaced by the SU(N) or U(N) Non-Abelian versions:
(Wilczek and Zee, PRL 1984).

Aab
j = i〈ua|∂j |ub〉.

Curvature tensor:

Fij = ∂iAj − ∂jAi − i [Ai ,Aj ].

Under gauge transformations |u〉 → U|u〉 we have that

Fij → UFijU
−1,

where U is a Lie-algebra-valued matrix.

The Wilson line operator W is defined as W=P exp(i
∫ kf

ki
A · dk).



Second Chern number

The second Chern number C2 plays a central role in the 4D QHE
and 4D Chern insulators.

C2 =
1

8π2

∫
T4

tr F ∧ F ,

where the first Brillouin zone is now a four-dimensional torus T4

spanned by k = (kx , ky , kz , kw ).

Cold-atom implementation: see H. Price at al., PRL 2015 and M. Lohse

at al., Nature 2018.



Chern-Simons theory in the 2D QHE

U(1) Chern-Simons theory in the IQHE

SCS =
ν

4π

∫
d3x εµνλAµ∂νAλ

I Quantized Hall conductivity with filling factor ν
I Bulk-edge correspondence: CS2+1/CFT1+1

I Physical observables: 〈WL〉 = 〈exp i
∮
A〉

(a) Quantum Hall Effect (b) Hall conductivity



Axion electrodynamics in 3D TIs

Axion Electrodynamics describes the topological response of 3D
topological insulators (TIs) (Qi, Hughes, Zhang, PRB 2008).

Saxion =
θe2

32π2

∫
d4x εαβγδFαβFγδ.

For standard insulators θ = 0 while for TIs θ = π.

Gapped boundary states support an half-integer QHE:

SCS =
1

8π

∫
d3x εµνλAµ∂νAλ,

ν =
1

2
.



Mixed Chern-Simons theory in the 2D QSHE

Each 2D block system is coupled to a gauge field A
(±)
µ and gives

rise to a corresponding Abelian Chern-Simons theory,

S
(±)
cs =

C±1
4π

∫
d3xεµνλA(±)

µ ∂νA
(±)
λ .

By taking Ãµ = 1
2

[
A(+) − A(−)

]
, Aµ = 1

2

[
A(+) + A(−)

]
, we obtain

Ss,eff =
Cs

2π

∫
d3xεµνλÃµ∂νAλ,

with Cs = C+
1 − C−1 .

Currents:

Jµ =
Cs

2π
εµνλ∂νÃλ, J̃

µ =
Cs

2π
εµνλ∂νAλ.

We here pick the gauge

Aµ = (0, 0,−tEy ), Ãµ = 0,

Jx = 0, J̃x =
Cs

2π
Ey .



4D model and Dirac-like Hamiltonian

Y.-Q. Zhu, Z. Zheng, G. P., Z. D. Wang, PRL (2022)

H0(k) = dx Γ1 + dy Γ2 + dz Γ3 + dw Γ4 + dmΓ0,

where the Bloch vector

di = sin ki , dm = m −
∑

i

cos ki ,

with i = x , y , z ,w . The 8× 8 matrices Γi satisfy the Clifford
algebra. This system hosts two bands with the spectrum,

E± = ±
√

d2
x + d2

y + d2
z + d2

w + d2
m,

where each band has four-fold degeneracy.



Band structure and bulk-edge correspondence
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Second spin Chern number

This model preserves the CP-symmetry, i.e., {CP,H0} = 0, with
CP = iG112K satisfies (CP)2 = −1, with Gijk = σi ⊗ σj ⊗ σk .

HBD = UH0U
−1 = H+ ⊕ H−,

where each block Hamiltonian is given by

H±(k) = dxG10 ± dyG21 ∓ dzG23 ∓ dwG22 + dmG30,

with Gij = σi ⊗ σj .

C±2 =
1

8π2

∫
T4

tr F± ∧ F±,

with the values C±2 = ±3sgn(m) for 0 < |m| < 2, C±2 = ∓sgn(m)
for 2 < |m| < 4, and C±2 = 0 elsewhere.

C2s = (C+
2 − C−2 )/2.



Higher Second Chern number
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4D QSHE

S
(a)
eff =

C
(a)
2

24π2

∫
d5x εµνλρσA(a)

µ ∂νA
(a)
λ ∂ρA

(a)
σ ,

where a = ± for each block. We define two new gauge fields as

Aµ =
1

2

[
A(+)
µ + A(−)

µ

]
, Ãµ =

1

2

[
A(+)
µ − A(−)

µ

]
.

Seff =
C2s

4π2

∫
d5xεµνλρσÃµ∂νAλ∂ρAσ

+
C2s

12π2

∫
d5xεµνλρσÃµ∂νÃλ∂ρÃσ.

Ãµ = 0, Aµ = (−zEz ,−yBz , 0, 0, 0),

we obtain,

Jw = 0, J̃w =
C2s

4π2
EzBz .



4D QVHE

Similarly to the previous case we have A
(±)
µ = Aµ ± bµ, where

bµ = (b0,b, 0) and behaves like a axial gauge field.

Sv,eff =
C2v

12π2

∫
d5xεµνλρσ (3bµ∂νAλ∂ρAσ + bµ∂νbλ∂ρbσ) .

Without loss of generality, we take bµ = (b0, b1(y), b2, b3(t), 0).
Defining the (pseudo)-magnetic and (pseudo)-electric fields as

B = ∇× A, E = ∂tA−∇A0,

B5 = ∇× b, E5 = ∂tb−∇b0.

We obtain charge and valley currents,

Jw =
C2v

2π2
(E 5

z Bz + EzB
5
z ),

Jw
5 =

C2v

4π2

(
EzBz + E 5

z B
5
z

)
Jw

5 can be associated to the “4D quantum valley Hall effect”.



Cold-atom implementation

Since there are eight degrees of freedom in the model Hamiltonian,
a candidate choice is the use of the alkaline-earth-metal atoms.
It has a meta-stable excited-state manifold |e〉 besides the
ground-state manifold |g〉, from which we respectively select four
hyperfine states as the pseudo-spins to construct the extra spaces.
In particular, we specify the denotations to pseudo-spins as α =↑↓
and β = ±. We prepare the eight states are coupled by three
groups of optical fields.



Cold-atom Hamiltonian

H0 = Ĥ0 + H
(α)
so + H

(β)
so .

The first part of Hamiltonian describes the local energy of the
atoms and we employ the tight-binding approximation. Ĥ0 is then
expressed as

Ĥ0 =
∑

j

(−Jσ0 ⊗ σ0 ⊗ σ0ψ
†
j ψj+1 + H.c .) + V̂σ3 ⊗ σ0 ⊗ σ0ψ

†
j ψj .

Here, ψj = (ej↑+, ej↑−, ej↓+, ej↓−, gj↑+, gj↑−, gj↓+, gj↓−)T and λj

denotes the atomic annihilation operator on the j-th site.

H
(α)
so describes the coupling between the pseudo-spins α =↑↓. Its

form is given as follows,

H
(α)
so =

∫
dr
∑
β

M1(r)
[
ψ†e,↑,β(r)ψg ,↓,β(r)+ψ†e,↓,β(r)ψg ,↑,β(r)

]
+H.c .

Finally, H
(β)
so describes the coupling between the pseudo-spins

β = ±.



Conclusions and Outlook

I I have presented a novel 4D model that supports a quantized
second spin Chern number and topologically protected edge
states.

I I have shown that higher-dimensional mixed Chern-Simons
theories can describe the 4D QSHE and VQHE in our 4D
model in the low-energy regime.

I I have briefly presented a cold-atom implementation of our 4D
Dirac Hamiltonian.

I In future work, we will explore thermal quantum effects in this
4D system that can be probed by introducing an effective
curved background and can be described by
higher-dimensional gravitational Chern-Simons theories.

I We are finalizing a work to implement the second Euler
number in synthetic matter (it will appear on arXiv this
month).


