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Introduction

* The ROOT data analysis framework
* Distributed analysis of very large data bases
* Summary



The ROOT Data Analysis Framework

« ROQOT is a extensive data handling and analysis framework
- Efficient object data store scaling from KB's to PB’s

* C++ interpreter
- Extensive 2D+3D scientific data visualization capabilities
- Extensive set of data fitting, modeling and analysis methods
- Complete set of GUI widgets
- Classes for threading, shared memory, networking, etc.
- Parallel version of analysis engine runs on clusters and multi-core
* Fully cross platform, Unix/Linux, Mac OS X and Windows
* 3.1 million lines of C++, building into more than 100 shared libs
- Licensed under the LGPL
* Used by all HEP experiments in the world

* Used in many other scientific fields and in commercial world



A Little ROOT History

* Development started in Jan 1995
* First two years two developers
* First presentation and release Nov 1995

* Against the will of CERN management

- Commercial solutions by professional software companies was the
management line

* First usage in a small CERN heavy ion experiment NA49
- Good precursor for our final target the LHC

* Followed by the Frascati experiment Finuda

* Followed by the Fermilab experiments CDF and DO
- Fermilab assigned two FTE's to ROOT

* Followed by BNL, SLAC and DESY
* And finally followed by the CERN LHC experiments



ROOT Usage Stats

* ROQT binaries have been downloaded more than 800000 times
since 1997, and currently more than 90000 binaries per year

* There are about 5800 people registered on the RootTalk forum
* An estimated user community of about 25000 people

ROOT Downloads per year
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The Importance of the C++ Interpreter

* CINT is the core of ROOT for:
- Parsing and interpreting code in macros and on command line

* Providing class reflection information

- Generating function/method calling stubs

* We are working on moving from CINT to LLVM as new
interpreter technology

bash$ root

root [@] TH1F *hpx = new TH1F("hpx","This is the px distribution",100,-1,1);
root [1] for (Int_t 1 = 0; 1 < 25000; 1++) hpx->Fill(gRandom->Rndm());

root [2] hpx->Draw();

bash$ cat script.C
{

TH1F *hpx = new TH1F("hpx","This 1is the px distribution",100,-1,1);
for (Int_t 1 = 0; 1 < 25000; 1i++) hpx->Fill(gRandom->Rndm());
hpx->Draw();

}
bash$ root

root [@] .x script.C




ROOT Object Persistency

* Scalable, efficient, machine independent format

* Orthogonal to object model
- Persistency does not dictate object model

* Based on object serialization to a buffer

 Automatic schema evolution (backward and forward compatibility)
* Object versioning

* Compression

* Easily tunable granularity and clustering

* Remote access

* Self describing file format (stores reflection information)

* ROQT I/0O is used to store all LHC data (actually all HEP data)



Object Containers - TTree’s

* Special container for very large number of objects of the same
type (events)

* Minimum amount of overhead per entry

* Objects can be clustered per sub object or even per single
attribute (clusters are called branches)

* Each branch can be read individually

* Industry calls this “Vertical Data Storage”



TTree - Clustering per Object

Branches

Tree in memory




TTree - Clustering per Attribute

Streamer

Object in
memory




Processing a TTree

TSelector Output list

preselection analysis

/ l\> - Read needed

parts only

TTree

Loop over events



TSelector::Process()

// select event

b_nlhk->GetEntry(entry); if (nlhk[1k] <= 0.1) return kFALSE;
b_nlhpi->GetEntry(entry); 1f (nlhpi[ipi] <= 0.1) return kFALSE;
b_ipis->GetEntry(entry); ipis--; i1f (nlhpi[ipis] <= 0.1) return KFALSE;
b_njets->GetEntry(entry); if (njets < 1) return kFALSE;

// selection made, now analyze event

b_dm_d->GetEntry(entry); //read branch holding dm_d
b_rpdd_t->GetEntry(entry); //read branch holding rpd@_t

b_ptd@d_d->GetEntry(entry); //read branch holding ptd@_d

//f1ll some histograms
hdmd->Fi11(dm_d);

h2->Fill(dm_d, rpd@_t/0.029979*1.8646/ptd0_d);
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ROOT Cross Platform GUI

ROOT Object Browser
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ROOT Math/Stat Libraries
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RooFit/RooStats

* Framework for statistical calculations
- Works on arbitrary models and datasets

 Implements most accepted techniques (frequentists, Bayesian and
likelihood based methods)

 Common purposes:
» Point estimation: determine the best estimate of a parameter

- Estimation of confidence (credible) intervals: lower/higher limit or
multi-dimensional contours

- Hypothesis tests: evaluation of p-values (e.g discovery significance)
= Goodness-of-fit: how well a model describes the data

* Analysis combination:
= Provide utilities to build a combined model

= Full information available to treat correlations

* Digital publishing and sharing of results



RooFit

* Toolkit for data modeling (by W. Verkerke and D. Kirkby)
- Model probability density function (pdf):

- P(x;p.)
X: observables, p,q: parameters

* Functionality for building the pdf’s
- Complex model building from standard components

- Composition with addition, product and convolution

* All models (pdf) provide the functionality for
- Fitting of models to data sets

- Toy data sets Monte Carlo generation
- Visualization of models and data with ROOT graphics



RooFit Modeling

Mathematical concepts are represented as C++ objects

Gaus(x,m,s)

RooGaussian g

function RooAbsReal
)

PDF f(x) RooAbsPdf

Mathematical concept RooFit class

variable X RooRealVar

RooRealVar m

space point X RooArgSet

xmax

integral ff(x)dx RooReallIntegral RooRealVar x(“x”,”x”,2,-10,10)
X

RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g” ,x,m,s)

“‘min

list of space points RooAbsData

Provides a factory to auto-generates objects from a math-like language

RooWorkspace w;

w.factory (“Gaussian: :g(x[2,-10,10] ,m[0] ,s[3])")




RooFit Functionality

A RooPlot of "x"

* Toy MC generation from any pdf

RooAbsPdf *pdf = w.pdf (“g”);

RooRealVar *x = w.var(“'x”);
RooDataSet *data = pdf->generate(*x,10000) ;

* Fit of model to data
» Maximum likelihood or least square fit

pdf = pdf->fitTo (data) ;

//parameters will have now fitted values
w->var (“‘m”) ->Print () ;

w->var (“s”)->Print () ;

* Data and pdf visualization

RooAbsPdf *pdf = w.pdf(“g”);
RooPlot *xframe = x->frame() ;
data->plotOn (xframe) ;

pdf->plotOn (xframe) ;
xframe->Draw () ;




RooStats

* Framework for statistical calculations built on top of RooFit
(by K. Cranmer, L. Moneta, G. Schott and W. Verkerke + many other contributors)

* C++ interfaces and classes mapping to real statistical concepts
* Interval estimation or hypothesis tests

IntervalCalculator -4 HypoTestCalculator

retufns ™~ i J/ ‘ » returns

Confidenceinterval | |\ ‘ CombinedCalculator
| Lkeinodierva } ~~~~~~~~~~ | SR ’ ProfileLikelihoodCalculator

HypoTestResult

. , p HybridCalculator
PointSetinterval - FeldmanCousins

_-| FrequentistCalculator
MCMClinterval 1 MCMCCalculator | ;
AsymptoticCalculator

Simpleinterval BayesianCalculator

HypoTestinverter @




RooStats Calculator Classes

» Profile Likelihood calculator
* Interval estimation and hypothesis testing using asymptotic
properties of the likelihood function
* FeldmanCousins and Neyman construction
- Frequentist interval calculator based on generation of toy data

* Bayesian calculators

- Interval estimation using Bayes theorem
BayesianCalculator (analytical or adaptive numerical integration)
MCMCCalculator (Markov-Chain Monte Carlo)

* HybridCalculator and FrequentistCalculator
- Frequentist hypothesis test calculators using toy data
- Difference in treatment of nuisance parameters

* HypoTestinverter

- Invert hypothesis test (e.g. from Hybrid or FrequentistCalculator) to
estimate an interval



Example: Bayesian Analysis

 RooStats provides classes for
- Marginalize posterior and estimate credible interval

likelihood function prior probability  nuisance parameters
marginalization

[ L], )T (p, v)dy
P(/L‘CB) — Bayesian Theorem
POI data U L(SU‘,LL, V)H(M, V)dudz

——
normalisation term

posterior probability

- Support for different integration algorithms:
= Adaptive (numerical), MC integration or Markov-Chain

= Can work with models with many
parameters (e.g few hundreds)

BayesianCalculator bc(data, model) ;
Example: bc.SetConfidencelevel (0 0 683) M
SimpleInterval *cint = bc.GetInterval () ;

S i
95% CL interval double upperLimit = cint->UpperLimit () ;

RooPlot * pl = bc.GetPosteriorPlot() ;
pl->Draw () ;




RooStats Example

Gaussian peak over a flat background

A RooPlot of "mass” - log profile ikelihood ratio
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Distributed Analysis



End-User Analysis Activities

* Interactive tasks: desktop/laptop
= Browsing output, final fits, visualization

* |/0 bound tasks: data mining
- O(1~10TB) data effectively read

- O(10h~100h) @ ~25 MB/s (typical I/O rate)

* CPU bound tasks:
= Complex combinatorial analysis

- Fast “private” simulations
 Toy Monte-Carlo’s for systematic studies



End-User Analysis Activities

* Interactive tasks: desktop/laptop
= Browsing output, final fits, visualization

* |/0 bound tasks: data mining
- O(1~10TB) data effectively read

- O(10h~100h) @ ~25 MB/s (typical I/O rate)

* CPU bound tasks:
= Complex combinatorial analysis

- Fast “private” simulations
 Toy Monte-Carlo’s for systematic studies

Typically embarrassingly parallel tasks:

just split job to get ideal parallel speedup



End-User Analysis Scenarios

Full interactive

User influence

Interactive batch

Continuous tuning A
and optimization

Response time




The Traditional Batch Approach

Batch cluster
Split analysis job in N
stand-alone sub-jobs

Collect sub-jobs and
merge into single output

Split analysis task in N batch jobs

Job submission sequential

Potentially large startup latency

Real-time feedback needs instrumentation
Analysis finished when last sub-job finished




The PROOF Approach

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

Scheduler

Dynamic splitting and automatic merging
Real-time feedback

Cluster perceived as extension of local PC
e Same macro and syntax as in local session
Dynamic use of resources

Easy setup




PROOF - Parallel ROOT Facility

 Parallel coordination of distributed ROOT sessions
- Transparent: extension of the local ROOT prompt

= Scalable: small serial overhead

* Multi process parallelism
- Easy adaptation to broad range of setups

- Less requirements on user code

* Process the data from the local disk, if possible
* Qutput much smaller than input

- Minimize data transfers, network overhead

* Dynamic load balancing
- Pull architecture

= Minimize amount of wasted cycles
* Real-time feedback, interactive
* Reduces the time to completion



Multi-Tier Architecture

Client Master Slaves Files Adapts to wide

Super- Sub- | area virtual
i master masters | -
| | clusters

Commands, , - .
sorpts | e Geographically

separated domains,

| heterogeneous
Outputlist !

] Fereh zs | | Z .
“ (histograms, ...} | , | L machines

Network performance
Less important —————> VERY important

Optimize for data locality or high bandwidth data server access




Performance - ATLAS Analysis

* Higgs 4-lepton analysis

* 50 nodes, AMD 64bit quad-core, 4 GB RAM

45 M events, 68 GB
» 845 files

* Analysis include fit
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PROOF Scalability on Multi-Core Machines



PROOF Scalability on Multi-Core Machines
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PROOF Scalability on Multi-Core Machines
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PROOF Scalability on Multi-Core Machines
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New Developments

* New Cling/LLVM based C++11 compliant just in time interpreter
* New browser based Javascript data access and display classes

* New iOS (iPad, iPhone, iPod) support

* New MacOS X native backend



Summary

* The ROQT system provides the common LHC data storage and
analysis software infrastructure

* ROOT pioneered and provides an optimized vertical data store

* ROOT provides a set of first class statistical tools

* ROOT provides PROOF, a parallel and distributed analysis engine
* A whole bunch of new exciting developments in the pipeline
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