
ROOT
A Database and Analysis Tool

Dr. Fons Rademakers
ROOT Project Leader
CERN

FDT2, Frascati, 29-Nov-2011.

Introduction
• The ROOT data analysis framework
• Distributed analysis of very large data bases
• Summary

The ROOT Data Analysis Framework
• ROOT is a extensive data handling and analysis framework

■ Efficient object data store scaling from KB’s to PB’s
■ C++ interpreter
■ Extensive 2D+3D scientific data visualization capabilities
■ Extensive set of data fitting, modeling and analysis methods
■ Complete set of GUI widgets
■ Classes for threading, shared memory, networking, etc.
■ Parallel version of analysis engine runs on clusters and multi-core
■ Fully cross platform, Unix/Linux, Mac OS X and Windows
■ 3.1 million lines of C++, building into more than 100 shared libs
■ Licensed under the LGPL

• Used by all HEP experiments in the world
• Used in many other scientific fields and in commercial world

A Little ROOT History
• Development started in Jan 1995
• First two years two developers
• First presentation and release Nov 1995
• Against the will of CERN management

■ Commercial solutions by professional software companies was the
management line

• First usage in a small CERN heavy ion experiment NA49
■ Good precursor for our final target the LHC

• Followed by the Frascati experiment Finuda
• Followed by the Fermilab experiments CDF and D0

■ Fermilab assigned two FTE’s to ROOT

• Followed by BNL, SLAC and DESY
• And finally followed by the CERN LHC experiments

ROOT Usage Stats
• ROOT binaries have been downloaded more than 800000 times

since 1997, and currently more than 90000 binaries per year
• There are about 5800 people registered on the RootTalk forum
• An estimated user community of about 25000 people

The Importance of the C++ Interpreter
• CINT is the core of ROOT for:

■ Parsing and interpreting code in macros and on command line
■ Providing class reflection information
■ Generating function/method calling stubs

• We are working on moving from CINT to LLVM as new
interpreter technology
bash$ root
root [0] TH1F *hpx = new TH1F("hpx","This is the px distribution",100,-1,1);
root [1] for (Int_t i = 0; i < 25000; i++) hpx->Fill(gRandom->Rndm());
root [2] hpx->Draw();

bash$ cat script.C
{
 TH1F *hpx = new TH1F("hpx","This is the px distribution",100,-1,1);
 for (Int_t i = 0; i < 25000; i++) hpx->Fill(gRandom->Rndm());
 hpx->Draw();
}
bash$ root
root [0] .x script.C

ROOT Object Persistency
• Scalable, efficient, machine independent format
• Orthogonal to object model

■ Persistency does not dictate object model

• Based on object serialization to a buffer
• Automatic schema evolution (backward and forward compatibility)
• Object versioning
• Compression
• Easily tunable granularity and clustering
• Remote access
• Self describing file format (stores reflection information)
• ROOT I/O is used to store all LHC data (actually all HEP data)

Object Containers - TTree’s
• Special container for very large number of objects of the same

type (events)
• Minimum amount of overhead per entry
• Objects can be clustered per sub object or even per single

attribute (clusters are called branches)
• Each branch can be read individually
• Industry calls this “Vertical Data Storage”

TTree - Clustering per Object

Streamer

File

Branches

Tree in memory

Tree entries

TTree - Clustering per Attribute

Streamer

File

Object in
memory

Processing a TTree

preselection analysis
Ok

Output list

Process()

Branch

Branch

Branch

BranchLeaf Leaf

Leaf Leaf Leaf

Leaf Leaf

Event n
Read needed

parts only

TTree

Loop over events

1 2 n last

Terminate()
- Finalize analysis

 (fitting, ...)

Begin()
- Create histograms
- Define output list

TSelector

TSelector::Process()

 ...
 ...
 // select event
 b_nlhk->GetEntry(entry); if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry); if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry); ipis--; if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry); if (njets < 1) return kFALSE;

 // selection made, now analyze event
 b_dm_d->GetEntry(entry); //read branch holding dm_d
 b_rpd0_t->GetEntry(entry); //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry); //read branch holding ptd0_d

 //fill some histograms
 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
 ...
 ...

ROOT Scientific Graphics

More Graphics

“SURF”
“LEGO”

TF3

TH3
TGLParametric

ROOT Cross Platform GUI

Complex Geometries

ROOT Math/Stat Libraries

RooFit/RooStats
• Framework for statistical calculations

■ Works on arbitrary models and datasets
■ Implements most accepted techniques (frequentists, Bayesian and

likelihood based methods)

• Common purposes:
■ Point estimation: determine the best estimate of a parameter
■ Estimation of confidence (credible) intervals: lower/higher limit or

multi-dimensional contours
■ Hypothesis tests: evaluation of p-values (e.g discovery significance)
■ Goodness-of-fit: how well a model describes the data

• Analysis combination:
■ Provide utilities to build a combined model

■ Full information available to treat correlations

• Digital publishing and sharing of results

RooFit
• Toolkit for data modeling (by W. Verkerke and D. Kirkby)

■ Model probability density function (pdf):
■ P(x;p,q)

x: observables, p,q: parameters

• Functionality for building the pdf’s
■ Complex model building from standard components
■ Composition with addition, product and convolution

• All models (pdf) provide the functionality for
■ Fitting of models to data sets
■ Toy data sets Monte Carlo generation
■ Visualization of models and data with ROOT graphics

RooFit Modeling
Mathematical concepts are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept Gaus(x,m,s)

RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s)

RooRealVar x

RooRealVar m

RooRealVar s

RooGaussian g

Provides a factory to auto-generates objects from a math-like language

RooWorkspace w;
w.factory(“Gaussian::g(x[2,-10,10],m[0],s[3])”)

RooFit Functionality
• Toy MC generation from any pdf

• Fit of model to data
■ Maximum likelihood or least square fit
■ Different algorithms for minimization available

• Data and pdf visualization

RooAbsPdf *pdf = w.pdf(“g”);
RooRealVar *x = w.var(“x”);
RooDataSet *data = pdf->generate(*x,10000);

pdf = pdf->fitTo(data);
//parameters will have now fitted values
w->var(“m”)->Print();
w->var(“s”)->Print();

RooAbsPdf *pdf = w.pdf(“g”);
RooPlot *xframe = x->frame();
data->plotOn(xframe);
pdf->plotOn(xframe);
xframe->Draw();

RooStats
• Framework for statistical calculations built on top of RooFit

(by K. Cranmer, L. Moneta, G. Schott and W. Verkerke + many other contributors)

• C++ interfaces and classes mapping to real statistical concepts
■ Interval estimation or hypothesis tests

RooStats Calculator Classes
• Profile Likelihood calculator

■ Interval estimation and hypothesis testing using asymptotic
properties of the likelihood function

• FeldmanCousins and Neyman construction
■ Frequentist interval calculator based on generation of toy data

• Bayesian calculators
■ Interval estimation using Bayes theorem
BayesianCalculator (analytical or adaptive numerical integration)
MCMCCalculator (Markov-Chain Monte Carlo)

• HybridCalculator and FrequentistCalculator
■ Frequentist hypothesis test calculators using toy data

■ Difference in treatment of nuisance parameters

• HypoTestInverter
■ Invert hypothesis test (e.g. from Hybrid or FrequentistCalculator) to

estimate an interval

Example: Bayesian Analysis
• RooStats provides classes for

■ Marginalize posterior and estimate credible interval

■ Support for different integration algorithms:
■ Adaptive (numerical), MC integration or Markov-Chain
■ Can work with models with many

parameters (e.g few hundreds)

nuisance parameters
marginalization posterior probability

likelihood function prior probability

normalisation term

POI data

P (µ|x) =
R

L(x|µ, ⌫)⇧(µ, ⌫)d⌫RR
L(x|µ, ⌫)⇧(µ, ⌫)dµd⌫

Bayesian Theorem

BayesianCalculator bc(data, model);
bc.SetConfidenceLevel(0.683);
SimpleInterval *cint = bc.GetInterval();
double upperLimit = cint->UpperLimit();
RooPlot * pl = bc.GetPosteriorPlot();
pl->Draw();

Example:
95% CL interval

RooStats Example
Gaussian peak over a flat background

⌅ =
L(x|�r0,

ˆ̂�s)
L(x|�̂r, �̂s)

model fit to observed
data

1 σ interval
from likelihood function

2d interval estimation
mass vs signal rate
result of 3 methods:

Likelihood
Bayes (MCMC)
FeldmanCousins

Result on Signal Significance from hybrid calculator

Distributed Analysis

End-User Analysis Activities
• Interactive tasks: desktop/laptop

■ Browsing output, final fits, visualization

• I/O bound tasks: data mining
■ O(1~10TB) data effectively read
■ O(10h~100h) @ ~25 MB/s (typical I/O rate)

• CPU bound tasks:
■ Complex combinatorial analysis
■ Fast “private” simulations
■ Toy Monte-Carlo’s for systematic studies

End-User Analysis Activities
• Interactive tasks: desktop/laptop

■ Browsing output, final fits, visualization

• I/O bound tasks: data mining
■ O(1~10TB) data effectively read
■ O(10h~100h) @ ~25 MB/s (typical I/O rate)

• CPU bound tasks:
■ Complex combinatorial analysis
■ Fast “private” simulations
■ Toy Monte-Carlo’s for systematic studies

Typically embarrassingly parallel tasks:
just split job to get ideal parallel speedup

End-User Analysis Scenarios
U

se
r i

nf
lu

en
ce

Response time

Event display
Histogram plotting/browsing

Interactive fitting

Sporadic tuning and
optimization

Production, reconstruction

Continuous tuning
and optimization

Full interactive

Interactive batch

Batch

The Traditional Batch Approach

File catalog

Batch
Scheduler

Storage

CPU’s

Query

Split analysis job in N
stand-alone sub-jobs

Collect sub-jobs and
merge into single output

Batch cluster

• Split analysis task in N batch jobs
• Job submission sequential
• Potentially large startup latency
• Real-time feedback needs instrumentation
• Analysis finished when last sub-job finished

Job splitter

Job

Job

Job

Job

Job Merger

Job

Job

Job

Job

Queue

Job

Job

Job

Job

The PROOF Approach

File catalog

Master

Scheduler

Storage

CPU’s

Query

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

• Dynamic splitting and automatic merging
• Real-time feedback
• Cluster perceived as extension of local PC
• Same macro and syntax as in local session
• Dynamic use of resources
• Easy setup

PROOF - Parallel ROOT Facility
• Parallel coordination of distributed ROOT sessions

■ Transparent: extension of the local ROOT prompt
■ Scalable: small serial overhead

• Multi process parallelism
■ Easy adaptation to broad range of setups
■ Less requirements on user code

• Process the data from the local disk, if possible
■ Output much smaller than input
■ Minimize data transfers, network overhead

• Dynamic load balancing
■ Pull architecture
■ Minimize amount of wasted cycles

• Real-time feedback, interactive
• Reduces the time to completion

Multi-Tier Architecture

Adapts to wide
area virtual

clusters

Geographically
separated domains,

heterogeneous
machines

Network performance
Less important VERY important

Optimize for data locality or high bandwidth data server access

Performance - ATLAS Analysis
• Higgs 4-lepton analysis
• 50 nodes, AMD 64bit quad-core, 4 GB RAM
• 4.5 M events, 68 GB
• 845 files
• Analysis include fit

• Single session
■ 1.5 kEvt/s @ ~50 min

• PROOF 1 user (80 workers)
■ 100 kEvt/s @ ~1 min

• PROOF 8 users (64 workers)
■ 40 kEvt/s @ ~ 2.5 min

Text

Courtesy of G.C. Montoya, Wisconsin.

PROOF Scalability on Multi-Core Machines

PROOF Scalability on Multi-Core Machines

PROOF Scalability on Multi-Core Machines

PROOF Scalability on Multi-Core Machines

PROOF Scalability on Multi-Core Machines

Running on MacPro with
dual Quad Core CPU’s.

New Developments
• New Cling/LLVM based C++11 compliant just in time interpreter
• New browser based Javascript data access and display classes
• New iOS (iPad, iPhone, iPod) support
• New MacOS X native backend

Summary
• The ROOT system provides the common LHC data storage and

analysis software infrastructure
• ROOT pioneered and provides an optimized vertical data store
• ROOT provides a set of first class statistical tools
• ROOT provides PROOF, a parallel and distributed analysis engine
• A whole bunch of new exciting developments in the pipeline

36

