ROOT
A Database and Analysis Tool

Dr. Fons Rademakers
ROOT Project Leader
CERN

FDT2, Frascati, 29-Nov-2011.

Introduction

* The ROOT data analysis framework
* Distributed analysis of very large data bases
* Summary

The ROOT Data Analysis Framework

« ROQOT is a extensive data handling and analysis framework
- Efficient object data store scaling from KB's to PB’s

* C++ interpreter
- Extensive 2D+3D scientific data visualization capabilities
- Extensive set of data fitting, modeling and analysis methods
- Complete set of GUI widgets
- Classes for threading, shared memory, networking, etc.
- Parallel version of analysis engine runs on clusters and multi-core
* Fully cross platform, Unix/Linux, Mac OS X and Windows
* 3.1 million lines of C++, building into more than 100 shared libs
- Licensed under the LGPL
* Used by all HEP experiments in the world

* Used in many other scientific fields and in commercial world

A Little ROOT History

* Development started in Jan 1995
* First two years two developers
* First presentation and release Nov 1995

* Against the will of CERN management

- Commercial solutions by professional software companies was the
management line

* First usage in a small CERN heavy ion experiment NA49
- Good precursor for our final target the LHC

* Followed by the Frascati experiment Finuda

* Followed by the Fermilab experiments CDF and DO
- Fermilab assigned two FTE's to ROOT

* Followed by BNL, SLAC and DESY
* And finally followed by the CERN LHC experiments

ROOT Usage Stats

* ROQT binaries have been downloaded more than 800000 times
since 1997, and currently more than 90000 binaries per year

* There are about 5800 people registered on the RootTalk forum
* An estimated user community of about 25000 people

ROOT Downloads per year

Sun Nov 27 18:00:18 2011

g JJJ]““!]! LU

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

The Importance of the C++ Interpreter

* CINT is the core of ROOT for:
- Parsing and interpreting code in macros and on command line

* Providing class reflection information

- Generating function/method calling stubs

* We are working on moving from CINT to LLVM as new
interpreter technology

bash$ root

root [@] TH1F *hpx = new TH1F("hpx","This is the px distribution",100,-1,1);
root [1] for (Int_t 1 = 0; 1 < 25000; 1++) hpx->Fill(gRandom->Rndm());

root [2] hpx->Draw();

bash$ cat script.C
{

TH1F *hpx = new TH1F("hpx","This 1is the px distribution",100,-1,1);
for (Int_t 1 = 0; 1 < 25000; 1i++) hpx->Fill(gRandom->Rndm());
hpx->Draw();

}
bash$ root

root [@] .x script.C

ROOT Object Persistency

* Scalable, efficient, machine independent format

* Orthogonal to object model
- Persistency does not dictate object model

* Based on object serialization to a buffer

 Automatic schema evolution (backward and forward compatibility)
* Object versioning

* Compression

* Easily tunable granularity and clustering

* Remote access

* Self describing file format (stores reflection information)

* ROQT I/0O is used to store all LHC data (actually all HEP data)

Object Containers - TTree’s

* Special container for very large number of objects of the same
type (events)

* Minimum amount of overhead per entry

* Objects can be clustered per sub object or even per single
attribute (clusters are called branches)

* Each branch can be read individually

* Industry calls this “Vertical Data Storage”

TTree - Clustering per Object

Branches

Tree in memory

TTree - Clustering per Attribute

Streamer

Object in
memory

Processing a TTree

TSelector Output list

preselection analysis

/ l\> - Read needed

parts only

TTree

Loop over events

TSelector::Process()

// select event

b_nlhk->GetEntry(entry); if (nlhk[1k] <= 0.1) return kFALSE;
b_nlhpi->GetEntry(entry); 1f (nlhpi[ipi] <= 0.1) return kFALSE;
b_ipis->GetEntry(entry); ipis--; i1f (nlhpi[ipis] <= 0.1) return KFALSE;
b_njets->GetEntry(entry); if (njets < 1) return kFALSE;

// selection made, now analyze event

b_dm_d->GetEntry(entry); //read branch holding dm_d
b_rpdd_t->GetEntry(entry); //read branch holding rpd@_t

b_ptd@d_d->GetEntry(entry); //read branch holding ptd@_d

//f1ll some histograms
hdmd->Fi11(dm_d);

h2->Fill(dm_d, rpd@_t/0.029979*1.8646/ptd0_d);

ROOT Scientific G

4

--<‘—t~>bH,H+——Z-I\'

gb—> tH"; H"—>-tv-
' ATLAS

J-Ldt =300 fb"
Maximal mixing

LEP 2000

protons

raphics

Graph polar drawn as a polygon

2

Pie with offset and no colors

Pie with tangential labels

Pie with radial labels
Y
%

°
©
=

Pie with verbose labels

0.60 (11.8 %)

9
Slice2 1.10 (21.6 %)

Slice1
0.90 (17.6 %) 0.20 (3.9 %)
Slice3 Slice0

2.30 (45.1 %)
Slice4

ICS

More Graph

O
a
H
s
Q
g
d
H
[\
Ay
=
)
B

“LEGO”

“SURF"”

ROOT Cross Platform GUI

ROOT Object Browser
File Edit View Options Inspect CI

Style I Binnmgl

- Option
Name s 0 re 0 0

X Mean x
h Mean y
RMS x
RMS y

[Emors ¥ Front
IV palette ¥ Ba

£ o:f 000 2]
Frame Fill
. -

Marker

Fri Sep 23 10:14:26 2005

Stop

¥ Bertrand 1

Min Angle:[450 2] PROOF clus b0130.cern.ch” - 16 worker nodes

[or | | | cus F 20 files, 20000 events, starting event 0

e ————

73%

7 5

Marker Estimated time left: 3.4 sec (14680 events of 0 pr
Current Current Moo g

Processing Rate : 1579.0 eventsisec

OK Cancel Preview OK Cancel Preview R e e Query Result Ready for session-0-1xb0130-11| PROOF Cluster Proof cluster ready

v
9

Complex Geometr

ROOT Math/Stat Libraries

: :
Histogram library e ————

Cuts
— Likelihood
LikelihoodD

Statistical Libraries wrf| T e
MathMore

TMIPANN

Statistical - S —
o 5 B pees TMVA MLP . BDTGini
Random Numbers ‘ Utilities - _

01 02 03 04 . 06 07 08 09 1
Signal efficlency

Extra algonthms Fitting and Minimization

_Extra Math functions
GSL and more |

— e | (neygfl'ﬁun)-
athCore |

Linear Fitter

Function interfaces

Linear Algebra

| i dbs SMatrix_

- Basic algorithms libCore

Basio Math funcions

RooFit/RooStats

* Framework for statistical calculations
- Works on arbitrary models and datasets

 Implements most accepted techniques (frequentists, Bayesian and
likelihood based methods)

 Common purposes:
» Point estimation: determine the best estimate of a parameter

- Estimation of confidence (credible) intervals: lower/higher limit or
multi-dimensional contours

- Hypothesis tests: evaluation of p-values (e.g discovery significance)
= Goodness-of-fit: how well a model describes the data

* Analysis combination:
= Provide utilities to build a combined model

= Full information available to treat correlations

* Digital publishing and sharing of results

RooFit

* Toolkit for data modeling (by W. Verkerke and D. Kirkby)
- Model probability density function (pdf):

- P(x;p.)
X: observables, p,q: parameters

* Functionality for building the pdf’s
- Complex model building from standard components

- Composition with addition, product and convolution

* All models (pdf) provide the functionality for
- Fitting of models to data sets

- Toy data sets Monte Carlo generation
- Visualization of models and data with ROOT graphics

RooFit Modeling

Mathematical concepts are represented as C++ objects

Gaus(x,m,s)

RooGaussian g

function RooAbsReal
)

PDF f(x) RooAbsPdf

Mathematical concept RooFit class

variable X RooRealVar

RooRealVar m

space point X RooArgSet

xmax

integral ff(x)dx RooReallIntegral RooRealVar x(“x”,”x”,2,-10,10)
X

RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g” ,x,m,s)

“‘min

list of space points RooAbsData

Provides a factory to auto-generates objects from a math-like language

RooWorkspace w;

w.factory (“Gaussian: :g(x[2,-10,10] ,m[0] ,s[3])")

RooFit Functionality

A RooPlot of "x"

* Toy MC generation from any pdf

RooAbsPdf *pdf = w.pdf (“g”);

RooRealVar *x = w.var(“'x”);
RooDataSet *data = pdf->generate(*x,10000) ;

* Fit of model to data
» Maximum likelihood or least square fit

pdf = pdf->fitTo (data) ;

//parameters will have now fitted values
w->var (“‘m”) ->Print () ;

w->var (“s”)->Print () ;

* Data and pdf visualization

RooAbsPdf *pdf = w.pdf(“g”);
RooPlot *xframe = x->frame() ;
data->plotOn (xframe) ;

pdf->plotOn (xframe) ;
xframe->Draw () ;

RooStats

* Framework for statistical calculations built on top of RooFit
(by K. Cranmer, L. Moneta, G. Schott and W. Verkerke + many other contributors)

* C++ interfaces and classes mapping to real statistical concepts
* Interval estimation or hypothesis tests

IntervalCalculator -4 HypoTestCalculator

retufns ™~ i J/ ‘ » returns

Confidenceinterval | |\ ‘ CombinedCalculator
| Lkeinodierva } ~~~~~~~~~~ | SR ’ ProfileLikelihoodCalculator

HypoTestResult

. , p HybridCalculator
PointSetinterval - FeldmanCousins

_-| FrequentistCalculator
MCMClinterval 1 MCMCCalculator | ;
AsymptoticCalculator

Simpleinterval BayesianCalculator

HypoTestinverter @

RooStats Calculator Classes

» Profile Likelihood calculator
* Interval estimation and hypothesis testing using asymptotic
properties of the likelihood function
* FeldmanCousins and Neyman construction
- Frequentist interval calculator based on generation of toy data

* Bayesian calculators

- Interval estimation using Bayes theorem
BayesianCalculator (analytical or adaptive numerical integration)
MCMCCalculator (Markov-Chain Monte Carlo)

* HybridCalculator and FrequentistCalculator
- Frequentist hypothesis test calculators using toy data
- Difference in treatment of nuisance parameters

* HypoTestinverter

- Invert hypothesis test (e.g. from Hybrid or FrequentistCalculator) to
estimate an interval

Example: Bayesian Analysis

 RooStats provides classes for
- Marginalize posterior and estimate credible interval

likelihood function prior probability nuisance parameters
marginalization

[L],)T (p, v)dy
P(/L‘CB) — Bayesian Theorem
POI data U L(SU‘,LL, V)H(M, V)dudz

——
normalisation term

posterior probability

- Support for different integration algorithms:
= Adaptive (numerical), MC integration or Markov-Chain

= Can work with models with many
parameters (e.g few hundreds)

BayesianCalculator bc(data, model) ;
Example: bc.SetConfidencelevel (0 0 683) M
SimpleInterval *cint = bc.GetInterval () ;

S i
95% CL interval double upperLimit = cint->UpperLimit () ;

RooPlot * pl = bc.GetPosteriorPlot() ;
pl->Draw () ;

RooStats Example

Gaussian peak over a flat background

A RooPlot of "mass” - log profile ikelihood ratio

2

model fit to observed 3
data e\

14
» 1.2
1

1 O interval =
from likelihood function :

Events / (25)

04
0.2

100 150 200 250 J00 2350 400 450 S0
mass

_Contour of § vs trueMass |

» 100

2d interval estimation
mass vs signal rate
result of 3 methods:
Likelihood
Bayes (MCMC)
FeldmanCousins

— N —

A% -100 50 0)
test statistics

0

Result on Signal Significance from hybrid calculator

Distributed Analysis

End-User Analysis Activities

* Interactive tasks: desktop/laptop
= Browsing output, final fits, visualization

* |/0 bound tasks: data mining
- O(1~10TB) data effectively read

- O(10h~100h) @ ~25 MB/s (typical I/O rate)

* CPU bound tasks:
= Complex combinatorial analysis

- Fast “private” simulations
 Toy Monte-Carlo’s for systematic studies

End-User Analysis Activities

* Interactive tasks: desktop/laptop
= Browsing output, final fits, visualization

* |/0 bound tasks: data mining
- O(1~10TB) data effectively read

- O(10h~100h) @ ~25 MB/s (typical I/O rate)

* CPU bound tasks:
= Complex combinatorial analysis

- Fast “private” simulations
 Toy Monte-Carlo’s for systematic studies

Typically embarrassingly parallel tasks:

just split job to get ideal parallel speedup

End-User Analysis Scenarios

Full interactive

User influence

Interactive batch

Continuous tuning A
and optimization

Response time

The Traditional Batch Approach

Batch cluster
Split analysis job in N
stand-alone sub-jobs

Collect sub-jobs and
merge into single output

Split analysis task in N batch jobs

Job submission sequential

Potentially large startup latency

Real-time feedback needs instrumentation
Analysis finished when last sub-job finished

The PROOF Approach

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

Scheduler

Dynamic splitting and automatic merging
Real-time feedback

Cluster perceived as extension of local PC
e Same macro and syntax as in local session
Dynamic use of resources

Easy setup

PROOF - Parallel ROOT Facility

 Parallel coordination of distributed ROOT sessions
- Transparent: extension of the local ROOT prompt

= Scalable: small serial overhead

* Multi process parallelism
- Easy adaptation to broad range of setups

- Less requirements on user code

* Process the data from the local disk, if possible
* Qutput much smaller than input

- Minimize data transfers, network overhead

* Dynamic load balancing
- Pull architecture

= Minimize amount of wasted cycles
* Real-time feedback, interactive
* Reduces the time to completion

Multi-Tier Architecture

Client Master Slaves Files Adapts to wide

Super- Sub- | area virtual
i master masters | -
| | clusters

Commands, , - .
sorpts | e Geographically

separated domains,

| heterogeneous
Outputlist !

] Fereh zs | | Z .
“ (histograms, ...} | , | L machines

Network performance
Less important —————> VERY important

Optimize for data locality or high bandwidth data server access

Performance - ATLAS Analysis

* Higgs 4-lepton analysis

* 50 nodes, AMD 64bit quad-core, 4 GB RAM

45 M events, 68 GB
» 845 files

* Analysis include fit

70000
60000

50000

* Single session
* 1.5 kEvt/s @ ~50 min

* PROOF 1 user (80 workers)
- 100 kEvt/s @ ~1 min 19000

* PROOF 8 users (64 workers)
= 40 kEvt/s @ ~ 2.5 min

40000

0
~
)
8
T
(]
>
.
o
@
o
Q
w

PROOQOF Processing Speed - 4.2M events

1

Courtesy of G.C. Montoya, Wisconsin.

PROOF Scalability on Multi-Core Machines

PROOF Scalability on Multi-Core Machines

PROODF Procass llzizr - Singlz cors

Single ir‘m

Froc Time
[m=]

0056
x10°

PROOF Scalability on Multi-Core Machines

PROODF Procass llzizr - Singlz cors =) 1%

Single inm Core

%,

gl li!l'*'”.l,?‘,’, .

=
[
(=]

Processed
Evenis

C z 0021
x10°

PROOF Scalability on Multi-Core Machines

r - Singlz cors =] X

Single i"ﬁ* Core

240
Process
MBis

Fres M 390

Dual i"?'ﬂd‘ Core

Processed
Evenis

..... %

24 240
Process Process

""" Evenis/s =T
x102

Frocessed

""" Proc Time =
0 me 920
..... N

= 1%

Core

PROOF Scalability on Multi-Core Machines

Single inm

Mztzr - Singlz corz

FROOF Prosss

%,

‘.-'.\'I,' li!l'*'”.l,?‘,’, .

—
[
(=]

x102
u Processed
Everis

7 N

e
240
Process

=4
~
o~

Proc Tine <o)
AN

0 [m=]

Running on MacPro with
dual Quad Core CPU’s.

New Developments

* New Cling/LLVM based C++11 compliant just in time interpreter
* New browser based Javascript data access and display classes

* New iOS (iPad, iPhone, iPod) support

* New MacOS X native backend

Summary

* The ROQT system provides the common LHC data storage and
analysis software infrastructure

* ROOT pioneered and provides an optimized vertical data store

* ROOT provides a set of first class statistical tools

* ROOT provides PROOF, a parallel and distributed analysis engine
* A whole bunch of new exciting developments in the pipeline

36

