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Introduction

Problem of prediction - classification and regression.

Classical classification and regression techniques can deal with

conventional small-scale, low-dimensional data sets.

To apply to modern high-dimensional and high-throughput

data sets encounter serious conceptual and computational

difficulties.
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New techniques: support vector machines (Vapnik, 1995,

1998); other kernel methods to deal with high-dimensional data

sets.

Drawback: lack of useful measures of confidence in their

predictions.

For example, bounds in PAC theory on the probability of error

exceed 1.
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On-line prediction protocol:

Err0 := 0; Mult0 := 0; Emp0 := 0;

FOR n = 1,2, . . .:

Reality outputs xn ∈ X;

Predictor outputs Γεn ⊆ Y for all ε ∈ (0,1);

Reality outputs yn ∈ Y;

errεn :=

{
1 if yn /∈ Γεn
0 otherwise,

Errεn := Errεn−1 + errεn, ε ∈ (0,1);

multεn :=

{
1 if |Γεn| > 1
0 otherwise,

Multεn := Multεn−1 + multεn, ε ∈ (0,1);

empεn :=

{
1 if |Γεn| = 0
0 otherwise,

Empεn := Empεn−1 + Empεn, ε ∈ (0,1).
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This talk: to “hedge” the predictions—to complement with
measures of their accuracy and reliability (“confidence
machines” or “conformal predictors”).

These measures: valid, informative, tailored to the individual
object to be predicted.

Their most important property is the automatic validity under
the randomness assumption (the data are i.i.d.): they never
overrate the accuracy and reliability of their predictions.

Another property: efficiency.

Any classification or regression algorithm can be transformed
into a conformal predictor.

Example: hand-written digits - USPS (9298 digits).
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Example: hand-written digits: the cumulative numbers of

errors for the 1-nearest neighbour conformal predictor on the

USPS data set (9298 hand-written digits, randomly permuted).

The solid line for 99%, the dash-dot line for 95%, and the

dotted line for 80%.

Next two slides: validity and efficiency
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Classification. The idea is to try every possible label Y as a

candidate for xl+1’s label and see how well the resulting

sequence

(x1, y1), . . . , (xl, yl), (xl+1, Y )

conforms to the randomness assumption (if it does conform to

this assumption, we will say that it is “random”).

The ideal case is where all Y s but one lead to sequences that

are not random.

We can then use the remaining Y as a confident prediction for

yl+1.
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Problem of hedged prediction → the problem of testing

randomness.

“Universal” notion of randomness by Kolmogorov, Martin-Löf

and Levin based on the existence of universal Turing machines.

Let Z be the set of all possible examples; as each example

consists of an object and a label, Z = X×Y, where X is the set

of all possible objects and Y, |Y| > 1, is the set of all possible

labels.
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Martin-Löf’s definition

A function t : Z∗ → [0,1] is a randomness test if

1. for all ε ∈ (0,1), all n ∈ {1,2, . . . } and all probability

distributions P on Z,

Pn {z ∈ Zn : t(z) ≤ ε} ≤ ε; (1)

2. t is upper semicomputable.
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Prediction with confidence and credibility

• consider all possible values Y ∈ Y for the label yl+1;

• find the randomness level detected by t for every possible
completion (x1, y1), . . . , (xl, yl), (xl+1, Y );

• predict the label Y corresponding to a completion with the
largest randomness level detected by t;

• output as the confidence in this prediction one minus the
second largest randomness level detected by t;

• output as the credibility of this prediction the randomness
level detected by t of the output prediction Y (i.e., the
largest randomness level detected by t over all possible
labels).
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Selected test examples from the USPS data set

The p-values of digits (0–9), label (true / predicted),

confidence and credibility:

0 1 2 3 4 5 6 7 8 9 label conf. cred.
0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 100% 0.0% 0.0% 0.0% 6 / 6 99.9% 100%
0.3% 0.4% 1.1% 0.7% 1.4% 0.7% 0.4% 0.3% 0.7% 0.8% 6 / 4 98.9% 1.4%
0.0% 0.3% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.1% 100% 9 / 9 99.7% 100%

Computed using the support vector method with the

polynomial kernel of degree 5.
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Conformal prediction from support vector machines

1

2
(w · w) + C

 l∑
i=1

ξi

→ min

(where C is a fixed constant) subject to constraints

yi ((xi · w) + b) ≥ 1− ξi, i = 1, . . . , l.

With each data set

(x1, y1), . . . , (xn, yn)

one associates an optimization problem whose solution
produces nonnegative numbers α1, . . . , αn (“Lagrange
multipliers”).
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Taking the completion

(x1, y1), . . . , (xl, yl), (xl+1, Y )

as our data set, we can find the corresponding α1, . . . , αl+1.

If Y is different from the actual label yl+1, we expect (xl+1, Y )
to be an outlier in the completion and so αl+1 be large as
compared with α1, . . . , αl.

A natural way to compare αl+1 to the other αs is to look at
the ratio

pY :=

∣∣∣{i = 1, . . . , l + 1 : αi ≥ αl+1}
∣∣∣

l + 1
,

which we call the p-value associated with the possible label Y
for xl+1. In words, the p-value is the proportion of the αs
which are at least as large as the last α.
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General definition

A nonconformity measure is a function that assigns to every

data sequence a sequence of numbers α1, . . . , αn, called

nonconformity scores, such that:

interchange of any two examples (xi, yi) and (xj, yj) leads to

the interchange of the corresponding nonconformity scores

(with all the other nonconformity scores unchanged).
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The corresponding conformal predictor maps each data set

(x1, y1), . . . , (xl, yl),

l = 0,1, . . ., each new example xl+1, and each confidence level

1− ε ∈ (0,1), into the prediction set

Γε
(
x1, y1, . . . , xl, yl, xl+1

)
:= {Y ∈ Y : pY > ε} ,

where pY are defined by

pY :=

∣∣∣{i = 1, . . . , l + 1 : αi ≥ αl+1}
∣∣∣

l + 1

with α1, . . . , αl+1 being the nonconformity scores corresponding

to the completion

(x1, y1), . . . , (xl, yl), (xl+1, Y ).
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Associating with each completion its p-value gives a

randomness test.

Therefore: for each l the probability of the event

yl+1 ∈ Γε
(
x1, y1, . . . , xl, yl, xl+1

)
is at least 1− ε.

In the case of classification we can summarize the prediction

sets Γε by two numbers: the confidence

sup {1− ε : |Γε| ≤ 1}

and the credibility

inf {ε : |Γε| = 0} .
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Efficient Regression

We cannot consider all possible values Y for yl+1: infinitely
many of them. However, there might still be efficient ways to
compute the prediction sets Γε.

The idea is that if αi are defined as the residuals

αi = |yi − fY (xi)| (2)

where fY : X→ R is a regression function then αi may have a
simple expression in terms of Y , leading to an efficient way of
computing the prediction sets.

Implemented in in the case where fY is found from the ridge
regression, or kernel ridge regression with the resulting
algorithm of hedged prediction called the ridge regression
confidence machine.

21



RRCM

validity
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RRCM

efficiency
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APPLICATIONS

• Data Analysis in Plasma (next talk by Jesus Vega)

• Image Classification

• Medical: clinical, MRI, proteomics-based

• Newtwork Traffic
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• Environment

• House Market

• Household Analysis

• Biology: PPI and String Kernels

• Other Applications
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Clinical Diagnostic of Acute Abdominal Pain based on
Conformal Predictors
Prediction for an individual patient:

APP DIV PPU NAP CHO INO PAN RCO DYS true label
1.2% 0.4% 0.2% 2.8% 5.7% 0.9% 1.4% 0.5% 80.6% DYS

• At the confidence level 95% the prediction region is
multiple, {cholecystitis, dyspepsia}.

• When we relax the confidence level to 90%, the prediction
region narrows down to {dyspepsia};

• at the confidence level 99% the prediction region widens to
{appendicitis, non-specific abdominal pain, cholecystitis,
pancreatitis, dyspepsia}.

Different presentation: the patient has DYS with conf=94.3%
and cred=80.6%.
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Image Diagnostic based on Conformal Predictors

fMRI-based diagnostic of depression

Ilia Nouretdinov, Sergi G. Costafreda, Alexander Gammerman,

Alexey Chervonenkis, Vladimir Vovk, Vladimir Vapnik, and

Cynthia H.Y. Fu.

Machine learning classification with confidence:

Application of transductive conformal predictors to

MRI-based diagnostic and prognostic markers in

depression.

NeuroImage, 56(2):809 813, 2011.
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MRI-based diagnostic
Diagnostic classification  of depression from functional MRI. 

 

 

 
 

fMRI BOLD responses during implicit processing of sad facial expressions of high intensity.  

Increased BOLD (blood oxygenation level dependent) in left superior frontal gyrus (in red) 

and other parts of brain were predictive of a diagnosis of depression.  
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Proteomics of OC
 

Ovarian Cancer – CP based on Proteomics  Data 
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Lake Geneva
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Classification for tj-ii thomson scattering

J. Vega, A. Murari, A. Pereira, S. Gonzalez, and I. Pastor.

Accurate and reliable image classification by using

conformal predictors in the tj-ii thomson scattering.

Review of Scientific Instruments, 81(10):10E118 10E1184,

2010.
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Conclusion

Many machine-learning techniques can be complemented with

provably valid measures of accuracy and reliability.

This talk: Support Vector Machines, and the ridge regression

procedure; but the principle is general: virtually any successful

prediction technique designed to work under the randomness

assumption can be used to produced equally successful hedged

predictions.

Replacing the original simple predictions with hedged

predictions enables us to control the number of errors

made by appropriately choosing the confidence level.

Current: Testing Randomness and other assumptions:

martingales.
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