New technique for aberration diagnostics and alignment of an extreme ultraviolet Schwarzschild objective

S. Bollanti(${ }^{(*)}$, P. Di Lazzaro, F. Flora, L. Mezi, D. Murra and A. Torre

ENEA, Frascati Research Centre, Technical Unit APRAD-SOR, via E. Fermi 45, 00044 Frascati, Italy - (*) sarah.bollanti@enea.it

Limiting factors for Schwarzschild Objective spatial resolution and test

Schwarzschild objectives (SO) are widely used in the extreme ultraviolet (EUV) and soft X-ray spectral regions both as magnification and reduction optics, e.g. for microscopy
lithography, respectively. The ENEA SO is used in the second configuration.
lithography, respectively. The ENEA SO is used in the second configuration.

A SO consists of two spherical mirrors (one concave, the other convex) put in concentric configuration. It is
possible to determine a pair (P, Q) of conjugated points on the optical axis where the aberrations possible to determine a pair (P, Q) of conjugated points on the optical axis where the aberrations are
dramatically reduced and the attainable spatial resolution from a geometric point of view is with the diffractive one.

ENEA SO $\quad \mathrm{R}_{1}=144.23 \mathrm{~mm} \quad \mathrm{Z}_{\mathrm{o}}=340.22 \mathrm{~mm} \quad \mathrm{Z}_{\mathrm{i}}=36.26 \mathrm{~mm} \quad \mathrm{M}=1 / 9.5$

The SO misalignment sensitivity

The ray-tracing program ZEMAX allows to relate the SO mirrors misalignment to the worsening
resolution (defined as the minimum rms diameter of the image of a point source on the optical axis)
(l)

The longitudinal decentring of the two mirrors influences the on-axis aberration, i.e. the spherical one. The transverse displacement of the mirrors' centres mainly generates the coma aberration, because this condition corresponds to having an off-axis source
the concave mirror with respect to the optical axis
S.Bollanti, P.Di Lazzaro, F.Flora, L.Mezi, D.Murra, A.Torre, Appl. Phys. B 99, 127-137 (2008)

The aberration diagnostics with the Foucault test

Foucault test improvement to overcome diffraction limitation

Longitudinal scan and geometrical figures

Ultraviolet light and diffraction

When the transverse dimension of the beam is comparable with λ / NA, diffraction effects prevent any further improvement:
The effect of the "long"-wavelength-light diffraction in - The observed images are blurred and put a the plane of KE cutting smears out the foucaultgrams calculated in geometrical approximation
(1) Experiment CIECE WNEME

20 -um KE 7 -course

P.Di Lazzaro, S.Bolanti, F.Flora, L.Mezi, D.Murra, A.Torre, IEEE Trans. Plasma Sci. 37, 475-480 (2009)

Final SO performances and conclusions

- The alignment of a Schwarrschild
objective operating at EUZ wavelength is
a very critical task
- The attainable spatial resolution is
strictly related to a correct alignment
- We demonstrated that aberrations
diagnostics and correction using a
wavelength that is $\sim 0 \times$ the operating one
to align a So are possible through the
described procedure
- The aligned SO has been used as the
proejection optics in the EUV MET-Egeria
facility in the ENEA Frascati Research
Centre to print 160 -nm-width dense lines
on PMMA photoresist
S.Bolanti, P.Di Lazzaro, F.FIora, L.Mezi, D.Murra, A.Torre, EPL, 84 (2008) 58003

