

2011 FDT-2, 28-30, 2011, Frascati. Italy >

Statistical analysis of temporal and spatial evolution of in-vessel dust particles in fusion devices by using CCD images

Suk-Ho Hong^{1,2,3,4}, Kyoung-Rae Kim^{1, 2}, Yong-Un Nam², Jin-Il Jung², Christian Grisolia⁵, Volker Rohde⁶, KSTAR team¹, Tore Supra team⁵, and ASDEX Upgrade team⁶

¹National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon, 305-333, Korea ²Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791, Korea. ³Department of Electrical Engineering, Hanyang University, Seoul 133-791, Korea. ⁴Department of Nuclear Fusion and Plasma Science, University of Science and Technology, 113 Gwahangno, Yusung-Gu, Daejeon, 305-333, Korea ⁵Association EURATOM-CEA/Cadarache, DSM/IRFM, St. Paul les Durance, 13108, France ⁶Max-Planck-Institut für Plasmaphysik, Association EURATOM-Association, 85748 Garching, Germany

- Flaking of radioactive tritated co-deposits of nano- to micrometer size.
 - -> Tritium(10% of 35g) was trapped in deposited a-C:H layers during the JET DTE1 campaign.
 - -> These amorphous layers are the main source of mobilizeable dusts in tokamaks.

DCEs in AUG

AUG 2007 campaign

beginning of Campaign

end of campaig

- A strong chemical reactivity with air (hot dusts, ITER accidental scenario).
- Damage to first wall & diagnostics due to high velocity impact.
- To control the amount of dusts in vacuum vessel, it is important to monitor the dust creation events of dust particles in Fusion devices.

CCD image processing

CCD image processing technique [1]

Pattern recognition

- Background : Plasma emission intensity
- -> Temporal change in the plasma emission intensity has to be slower than the acquisition speed of CCD cameras
- Target pattern : Well-defined straight line-like trajectories of dust

1] Suk-Ho Hong *Phys. Control. Fusion* **51** 075013 2009

Procedures

1) Conversion to the grayscale images

2) Filters for noises

- 3) Subtraction between the target frame and the background frame
- 4) Conversion to the 1bit black and white (BW) images
- → Counting dust particles, integrating frames (The frequency of the events / The creation zone of the dust particles)

- DCEs decrease as the plasma operation time increases.
- DCEs are dominant at divertor.

DCEs in KSTAR

KSTAR 2010, 2011 campaign

DCEs in Tore Supra

CIMES Campaign

DITS Campaign

- DCEs increases during D-shaping experiment, then stays low and almost constant during the campaign.
- DCEs are dominant at divertor as in the case of AUG.

Dust Velocity distribution

KSTARTV2011 program [2]

[2] Y.U.Nam Review of scientific instrument 81 093505 2010

- Identify the plasma position.

- Measure the well-defined straight line-like trajectories of dust along the toroidal direction.

- Measure Θ both ends of dust trajectory.
- Trajectories at inboard side.
- Dusts can not get through into the core plasma.

- Large amount of DCEs during the restart of the machine, but soon decreased.
 DCEs are strongly dependent on plasma operation scenarios (input power) and machine history.
- Frequent disruptions were occurred during the DITS campaign with repetitive long pulse. DCEs in DITS campaign show that dusts can limit the plasma operation.
- The origins of DCEs were identified.

Dust velocity distribution

