

Recent progress in time-offlight and thin-foil proton recoil techniques for fusion neutron spectroscopy *

Göran Ericsson, E. Andersson Sundén, C.Hellesen,

M.Cecconello, S.Conroy, J.Eriksson, A.Hjalmarsson, M.Skiba, M.Weiszflog

Uppsala University

Outline:

- Neutron diagnsotics in fusion experiments
- The ToF technique; combined time pulse height
- Non-magnetic thin-foil proton recoil; TPR
- Outlook and Conclusions

Frontiers ... Rome, 2011

* Work performed within the European Fusion Development Agreement (EFDA), Topical Group Diagnostics

INTRODUCTION

Neutron emission

- Fusion experiments with D and T fuel:
 - d + d → 3 He + n (2.45 MeV)
 - d + t → 4 He + n (14.0 MeV)
- "Impurities"
 - d + {³He, ⁴He, ⁹Be, ¹²C, ...} \rightarrow n + X
- Plasma parameters: P_{fus}, T_i, f(v_{ion}),...
- Fuel ion velocity populations:
 - Thermal $\rightarrow f(E_n)$ Gaussian
 - $\begin{array}{c} \mathsf{RF} \ heating \rightarrow f(\mathsf{E}_n) \ anisotropic, \ double \\ humped \end{array}$
 - Beam heating, alpha heating, ...
 - Spectral components (ITER):
 - Thermal bulk $S_n \sim 1$,
 - Beam heating $S_n \sim 0.1$,
 - RF heating $S_n \sim 0.01$,
 - α heating S_n ~ 0.001,
- Neutron emission variations:
 - Intensity; 0 10²⁰ n/s (ITER)
 - Temporal (ms), spatial (cm)

Challenges for fusion neutron diagnostics

- Provide information on relevant plasma/fuel ion parameters
 Feed-back for active control; ms time frame
- Extended n source (100 m³), "continuous" n emission (min)
 - Collimated LOS, direct + scattered spectral contributions
 - Reliable, robust techniques
- Harsh experimental conditions around the "reactor"
 - Neutron and gamma background
 - High-frequency EM interference
 - High levels of temperature, B-field
 - Competition over "real estate"; LOS, position, weight, space, ...
- Requirements on neutron spectroscopy
 - Results on ms \rightarrow spectroscopy on MHz signal rates (C_{cap})
 - High ϵ OR close to reactor core
 - Access to weak emission components \rightarrow high S/B ratio > 10⁴
 - Peaked, well-known response function (0 20 MeV)
 - Real-time information in ms \rightarrow data acq., processing, transfer

Neutron spectroscopy techniques Most "standard" n spectr. techniques tested in fusion (JET)

UPPSALA UNIVERSITET

Frontiers ... Rome, 2011 5

Andersson Sundén, NIM A610 (2009)

Neutron spectroscopy techniques Most "standard" n spectr. techniques tested in fusion (JET)

UPPSALA UNIVERSITET

Developments of the timeof-flight technique

Time-of-flight n spectroscopy

• Commonly used for 2.45 MeV n in D plasmas Continuous source of n: $E_n = 2m_n R/t_{tof}^2$ JIVERSITET S2 \Rightarrow Double scattering in S1 + S2 • Elastic n,p scattering in fast plastic scintillators \Rightarrow 2-body kinematics = correlated time, energy PM • If ONLY time info: Main Background = uncorrelated neutrons (random events) • Signal $\propto R_n$, Bgr $\propto R_n^2 \rightarrow B:S \propto R_n$ (R_n is n rate) • Limitations: S1 Primary ✓ System "paralysis" at high R_n ✓ Rate in S1 (≈ MHz) • C_{cap} ≈ 500 kHz (S:B ≈ 1); C_{max} ≈ 50 kHz (2009) JET TOFOR system installed 2005: ✓ Emphasis on rate capability ✓ Digital free-running time (only) stamping ✓ Separate, <u>non-correlated</u> pulse height spectra Developments in digital DAQ electronics: ✓ Waveform digitizers boards with capacity for time AND pulse height measurements exist! \checkmark Integral over waveform = pulse height ~ E_n n flux ✓ Digital CFD → time of waveform → t_{TOF}

ToF: From time stamp to full waveform

- OLD system: All eligible time stamps had to be used
- NEW system: Discriminate against events with unphysical combinations of time and pulse-height
- Other advantages of digital sampling of full waveform:
 - Improved time pick-off reduce timing walk, improve energy resolution
 - Baseline restoration: corrected for RF pick-up, baseline shifts
 - Pile-up correction/rejection
 - Event identification (depending on detector material) spikes, noise, ...
 - On-board processing in FPGA for real time applications

ToF: Simulation study

• 3 problems in today's fusion ToF systems:

✓ Multiple scattering of n gives tails in response function; unfolding issues
 ✓ Uncorrelated n gives accidental S1-S2 coincidences; high level bgr
 ✓ Analogue CFD not "perfect": E dependent time walk, poor E resolution

- Correlated time AND energy deposition measurements can reduce problems:
 - ✓Most multi-scatter events have "wrong" correlation t(tof)-E(S1)
 - ✓Most accidentals have "wrong" correlations t(tof)-E(S1)
 - $\checkmark {\sf Full}$ waveform gives improved event time pick-off

- Below: Simulation of D(T) measurement ($n_T / n_D \sim 10\%)$

UNIVERSITET

ToF: Waveform reconstruction

- Shannon's sampling theorem
 - "If a signal Y(t) contains no frequencies higher than f_{nyq} , it is COMPLETELY determined by giving its ordinates as a series of points spaced $\Delta t = 1 / (2f_{nyq})$ apart."
- Use sinc fcn as base:

 $Y(t) = \sum_{i} Y_{i} \frac{\sin((t - t_{i})/\Delta t)}{(t - t_{i})/\Delta t}$

- If possible, test sample signal after FULL processing chain at high rate, high bit resolution
- Investigate effect on reconstruction from down sampling of real signal
- Example: ToF events sampled at 2GS/s, 14 bits (black)
 - Upper panel: down sample to 500 MS/s (red dots)
 - Lower panel: down sample to 200 MS/s (red dots)

Frontiers ... Rome, 2011 11

Determine suitable sampling rate for full system – here \geq 500 MHz, 12 bit!

ToF: SP Devices board ADQ-412

- Purchase of digitizer system based on preliminary simulation and digitizer studies
- PXIe digitizer boards, PXIe crate, cables
- 3 digitzer boards purchased from SP-Devices, Linköping, Sweden
 - PXIe interface
 - 4 channels / card
 - Sampling @ 1 GS/s (4 ch), 2 GS/s (2 ch)
 - ADC 12 bit resolution
 - Flexible trigger options
 - Time synchronization options
 - Boards biased for negative pulses
 - Optional FPGA programming for onboard processing
- Development issues software
 - Re-arm time ≈200 ns (dead time)
 - Fixed memory records of 1024 samples
 - Fast streaming of data to extern. storage

ToF: timing aspects and requirements

- A) Programme to study time resolution as function of sampling rate and pulse amplitude (bit coverage):
 - 1) Synthetic (sofware generated) data
 - 2) Waveform generator data
 - 3) Scintillator data cosmic muons
- B) Study performance of specific DAQ digitizer boards (SPD ADQ 412) to assess their applicability to a ToF system:
 - 1) Intra-board time calibration
 - 2) Intra-board time synchronization common start
 - 3) Absolute time reference JET Hz clock

ToF: Gaussian pulses t resolution

ToF: Tests with cosmic muons

- 2 scintillators in coincidence
- Model of signal pulse shape taking into account : light emission timing, PMT timing, cable transfer function
- Data fromADQ-412 cards:
 - 2 channels on same card
 - 2 channels on different cards
 - Sampling at 2 GHz
- FWHM of dt = $t_{chan1} t_{chan2}$, $\Delta t = 0.45 \text{ ns}$
- Down sampling to find critical f_s
- Compare with model

 $\mathrm{FWHM} = \sqrt{\mathrm{model}^2 + 0.45^2}$

- ∆t =0.45 ns is time resolution of detector setup with this PMT
 - No improvements going above about 0.4 GHz sampling
- Contributions to time resolution:
 - PMT Transient Time Spread
 - Geometry, light collection
 - Electronic noise

ToF: ADQ-412 synchronization

- Multiple boards with different ADC clocks - vital to keep relatively synchronization
 - Relative difference between must be < 100 ps over several minutes or it will contribute to an extra broadening of the TOF
- PXIe standard offers 10 MHz clock as synch reference on the crate backplane
- A pulse generator running at 10 kHz for 5 s was used to asses the performance of the PXIe synch
 - Over 5 s, the relative time difference between the cards was below 5 ps
 - Same result for tests of several minutes
 - Time synch is adquate

t [s]

ToF: Absolute time measuremens

- Two different ADQ412 cards used
- Cards calibrated by PXI 10MHz clock
- "Gaussian" pulses from Waveform Generator
 - Pulse width about 7.5 ns
 - Pulse amplitude about 9 bits
- Time differences of ADQ412 input by Lemo cables
 - Cables of 3, 4, 5 ns used
 - 3 ns difference by using Lemo adaptor (3+3 ns)
- Pulses sinc reconstructed
- Time for each pulse determined by digital CFD
- Absolute time difference dt measured for:
 - dt = 0, 1, 3 (+0.1 adaptor?), 5 ns cable difference
 - ∆t from dt histogram of few 1000 "events"
- Δt about 10-15 ps as expected

ToF status summary

- Requirements on digitizer determined from analysis of scintillator pulses after FULL signal processing chain (here 1-2 GHz, 12 bit)
- Simulation study gives correlation between pulse amplitude and t (E) resolution for ALL pulse amplitudes
- Sinc (sin(x)/x) reconstruction gives "true" waveform
- Recoil particle energy from integration of sincreconstructed pulse – "no" dependence on sample points
- Time of waveform from sinc-reconstructed pulse "true" CFD performance can be achieved
- Inter-board synchronization verified
- Intra-board synchronization from PXI crate 10 MHz clock
- Performance of 3x 4 channel system in PXI crate studied:
 - Common START options tested
 - Waveform generator pulses tested
 - 2x Scintillator system coincidences tested
- System ready to be tested on real ToF system (JET)

First TOFOR data with ADQ-412

Data for 3 low-yeild JET pulses
Collected FridayNov. 25, 2011 in parallel with normal TOFOR DAQ
Only low threshold imposed – no time-pulse height correlation (yet)

Developments of the nonmagnetic thin-foil proton recoil technique

TPR: Detection principle

•The spectrometer is based on the *thin-foil* principle

•Collimated neutrons impinge a thin foil, which in turn radiates protons due to elastic Neutron beam scattering

• $E_{\rm p} = E_{\rm n} \cos^2(\theta_{np})$

•A suitable segmented detector (semi-conductor or scintillator) detects the protons and their energies

•Performance (efficiency, resolution) given by geometry (foil thickn, foil-detector distance, ...) and detector characteristics

•Local vacuum chamber to avoid proton energy loss and scattering

Detector placed close to n beam = Detector exposed to scattered neutrons

Thin-foil Proton Recoil spectrometer

- Central foil (here 10cm²), annular detector: Si(1mm) + Si(1mm) OR Si + YAP
- Conceptual design:
 - ✓ Tapered neutron collimator
 - \checkmark Gd (or similar) foil to reduce thermal flux through collimator
 - \checkmark Thin CH₂ foil as proton radiator
 - ✓ "Micron S1" Si detector (16 annular segments)
 - ✓ Vacuum chamber (<10⁻³ mbar), Aluminium to reduce capture γ
 - ✓ Lining of ⁶Li-doped plastic to absorb thermal neutrons in chamber
 - ✓ Magnetic shield to reduce ITER field in region of proton recoils
 - ✓ Tandem system

TPR simulations; MCNPX, FISPACT

• MCNPX

- Simplified model of ITER Port Cell
- Monte Carlo
 n + γ transport
 code

• FISPACT

- Activation code for fission and fusion applications
- Data exchange routines

EFDA TG Diagnostics, Garching, April 2011

TPR: s/b assessment

- MCNPX → scattered neutron background
- FISPACT → gamma background from vacuum chamber
- Background has been calculated varying:
 - ✓ vacuum chamber material (AI & SS)
 - ✓ vacuum chamber radius (10-40 cm)
- Weak dependence on vacuum chamber radius
- Aluminium best material

TPR: working point assessment

- Simulation study using:
 - •Vacuum
 - •2 mm thick detector
 - •"S2" design (Micron Ltd)
- •Parameter scan over
 - •Foil area
 - Foil thickness
 - •Foil detector distance
 - Detector segmentation

- "Pareto frontier" plot gives optimum: highest efficiency for a certain resolution
- Optimal point gives foil thickness and distance
- Different working points for "high resolution", "high efficiency", " α knock-on" ...

VERSITET

Preliminary results – full system

- Aluminium as structural material, graphite for foil holders
- Local vacuum chamber with as small radius as possible
- Coincidence detector 2x 1mm Si, OR Si + YAP
- Si detector w 4x 4 radial segments (16 electronics channels) per detector, 4x YAP segments
- Adjustable detector distance from foil (4 positions)
- Target foil changer (4 positions)
- Prepare 4 optimal working points:

Setting	Energy (MeV)	FWHM/E (%)	ε (cm²)	Foil t (mm)	Foil-det dist (mm)
High resolution	14	2.5	5e-5	0.10	330
High efficiency	14	10	5e-4	0.32	180
"Alpha knock-on"	14	6	2e-4	0.20	230
Test, High efficiency	2.5	10	1e-4	0.014	170

EFDA TG Diagnostics, Garching, April 2011

CONCLUSIONS

Summary and Conclusions

- Developments of time-of-flight (ToF) and thin-foil proton recoil (TPR) techniques for fusion neutron spectrosocpy
- ToF:
 - Development in commercial data acquisition technology now makes time AND waveform acquisition at high rates possible
 - A board suitable for fusion ToF n spectroscopy investigated (2-4 channel, 1-2 GS/s, 12 bit)
 - Developed model for assessing performance of digitizers (time and pulse height resolution) as fcn of sampling and amplitude
 - If possible, use high-performance digitizer in DAQ system position before deciding on full system; down sample in t and E
 - In 2012: Test the new pulse-height/time digitizing boards in a real ToF system (TOFOR @ JET)
- TPR:
 - s/b assessed in ITER like situation; s/b > 250 (AI; $E_n = 14 \text{ MeV}$)
 - Engineering design during 2012
 - In 2012: Pilot tests of foil + Si detector system + Read-out

ToF: Leading edge Digital CFD

• Sinc reconstruction of pulse data set; data can be:

- Down-sampled synthetic data
- Generator measurements
- Scintillator measurements
- Different methods for finding $t_{1/2}$ at $y_{1/2} = 0.5^* y_{min}$ of reconstructed pulse evaluated
 - Up sampling to 1 THz (1 ps);
 find t of point closest to y_{1/2}
 - Up sampling to 20 GHz 50 ps); linear interpolation
- Linear interpolation used in this work
 - Reasonable compromise between computational speed, memory and precision
 - Up sample the sincreconstructed signal to 20 GHz (50 ps time base)
 - Apply linear interpolation to points in interval y = 0.4y = 0.6y

$$y = 0.4 \cdot y_{min} \rightarrow 0.6 \cdot y_{min}$$

- Solve for t at $y = 0.5 \cdot y_{min}$

