Frontiers in Diagnostics Technologies LNF Frascati, 29 November 2011

A. Longhin INFN Frascati

On behalf of the OPERA Collaboration

Measurement of the neutrino velocity

- 11 countries
- 30 institutions
- 160 physicists

Collaborators

- CERN groups: CNGS beam, survey, timing and PS
- Geodesy group of the Università Sapienza of Rome
- Swiss Institute of Metrology (METAS)
- http://arxiv.org/pdf/1109.4897v2 •
- German Institute of Metrology (PTB)

OPERA and collaborating groups

ECC bricks + electronic detectors for $v_{\mu} \rightarrow v_{\tau}$ oscillation (appearance of v_{τ}) **Design of the OPERA experiment**

Implementation: the apparatus

Tasks: location of the ECC containing the v interactions and event timing

- extruded plastic scintillator strips (2.6 cm width)
- light collections with wave length shifting fibers (WLS)
- fibers read-out at either side with multi-anode 64 pixels PMTs (H7546)

The target tracker

• FNAL experiment (Phys. Rev. Lett. 43 (1979) 1361)

 v_{μ} (E_v > 30 GeV) short baseline experiment.

 $|v-c|/c| \le 4 \cdot 10^{-5}$ (comparison of v_{μ} and μ velocities).

Supernova SN1987A (e.g. Phys. Lett. B 201 (1988) 353)
 electron (anti) v, E ~ 10 MeV, 168.000 light years baseline.

 $|v-c|/c \le 2 \cdot 10^{-9}$ (v and light arrival time).

• MINOS (Phys. Rev. D 76 072005 2007)

 v_{μ} , $E_{v} \sim 3$ GeV with a tail above 100 GeV. 730 km baseline.

(v-c)/c = (5.1 ± 2.9) 10⁻⁵ ,1.8 σ , (v_u at near and far site)

Previous v–velocity measurements

Time of flight (TOF) + baseline \rightarrow "velocity"

- Key ingredients:
 - Sophisticated timing system: CNGS-OPERA synchronization at ~1ns
 - Accurate calibrations of the timing chains at CERN and OPERA
 - Precise measurement of the v time distribution at CERN through proton waveforms
 - High v energy high statistics (~ 15k events)
 - Measurement of the baseline by geodesy: 20 cm accuracy over 730 Km

Achieved ~ 10 ns overall accuracy on v TOF

similar syst. and stat. errors

Principle of the measurement

- 1200 asynchronous FE-nodes
- Gigabit ethernet network
- "trigger-less" system
- for each FE node mezzanine card: CPU (embedded Linux), memory, FPGA, clock receiver
- 10 ns UTC event time stamp granularity

OPERA read-out system and clock distribution

- 6 s cycle
- ~ pure v_{μ}
- <E,> = 17 GeV traveling through the Earth's crust

Two 10.5 μs extractions (by kicker magnet) separated by 50 ms

Proton

beam

2.4.1013 protons/extraction

Negligible cosmic-ray background: *O*(10⁻⁴)

The CNGS neutrino beam

• v production point is not known but:

accurate UTC time-stamp of protons

relativistic parent mesons

$$TOF_c$$
 = assuming *c* from BCT to OPERA (2439280.9 ns)
 TOF_{true} = accounting for speed of mesons down to decay point

$$\Delta t = \frac{z}{\beta c} - \frac{z}{c} = \frac{z}{c} \left(\frac{1}{\beta} - 1\right) \approx \frac{z}{c} \frac{1}{2\gamma^2}$$

$$\langle \Delta t \rangle = TOF_{true} - TOF_{c} = 14 \text{ ps}$$
 full FLUKA simulation

Neutrino production point

A. Longhin, Frontiers in Diagnostics Technologies

Single proton wave-form example

- Each event is associated to its proton spill waveform
- The "parent" proton is unknown within the 10.5 μs extraction time
- \rightarrow normalize each waveform and sum:

Average Probability Density Function (PDF) of the predicted t-distribution of v events

Another approach:

 \rightarrow normalize each waveform and use a different PDF for each v event

Neutrino event-time PDF

LNGS Rome La Sapienza Geodesy group

Dedicated measurements: July-Sept. 2010

2 new GPS benchmarks on each side of the 10 km highway tunnel

GPS measurements ported underground to OPERA

CERN survey group

CERN measurements (taken in different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics

Cross-check in June 2011: simultaneous CERN-LNGS measurement of GPS benchmarks

Geodesy

Distance (BCT - OPERA reference frame) = (731278.0 ± 0.2) m

Long and short time scale phenomena visible:

- \rightarrow continental drift
- → 2009 L'Aquila earthquake

LNGS position monitoring

GPS standard operation

resolves (x, y, z, t) with \geq 4 satellite observations

GPS "common-view" mode

same satellite visible from two sites Knowing (x, y, z) of the sites from former dedicated measurements \rightarrow determine time differences of local clocks w.r.t. the satellite, by off-line data exchange

Advantage: 730 km << 20000 km (satellite height) \rightarrow similar paths in ionosphere \rightarrow error cancellation

Standard technique for high accuracy t-transfer Permanent time link (~1 ns) between reference points at CERN and OPERA

GPS common view mode

- XLi (CERN)
- ESAT 2000 (LNGS)

2008: installation of a twin high accuracy system calibrated by METAS (Swiss metrology institute)

- PolaRx2e GPS receiver
- Cs-clock

at CERN and LNGS

CNGS OPERA synchronization

PolaRx2e : GPS receiver for timetransfer applications:

• frequency reference from Cs clock (Cs-4000)

 internal time tagging of 1PPS with respect to individual satellite observations

• off-line common-view analysis in CGGTTS format

• use ionosphere-free code (P3)

Twin synchronization devices

Event-by-event correction From the GPS common view mode operations

Result: TOF timelink correction

Delay T_A ?

Comparison: time-tags vs 1PPS signal (Cs clock) at the start- and end-point of a timing chain

Start

• Double path fibers measurement: by swapping transmitter and receiver component of the opto-chain

Time calibration techniques

End

Delay calibrations: CERN side

Continuous two-way measurement of UTC delay at CERN

Delay calibrations: LNGS side

picosecond UV laser excitation.

 \rightarrow delay from photo-cathode to FPGA input: (50.2 ± 2.3) ns

 \rightarrow average event time response: (59.6 ± 3.8 (sys.)) ns

including event position, pulse height dependence, ROC timewalk, DAQ quantization effects with simulations

TT time response measurement

Picosecond Injection Laser

A. Longhin, Frontiers in Diagnostics Technologies

First TT hit used as "stop"

and translated in time to a common reference point (assuming c) Internal/External: 7235/7988 events with 2009-2010-2011 CNGS runs (~10²⁰ pot) External events timing checked with full simulation $\rightarrow 2$ ns systematic uncertainty

Internal and external events

 $\delta t = TOF_c - TOF_v$

positive (negative) $\delta t \rightarrow v$ arrives earlier (later) than light

Unbinned Log-Likelihood maximised over δt:

$$L_k(\delta t_k) = \prod_j w_k(t_j + \delta t_k)$$
 k=1,2 extractions

Statistical error evaluated from log likelihood curves

Analysis method

A. Longhin, Frontiers in Diagnostics Technologies

Resulting $\delta t \sim 1000$ ns by construction >> individual calibration contributions

"Box" opened once all correction contributions reached satisfactory accuracy

Blind analysis

δ t = TOF_c-TOF_v = (1043.4 ± 7.8(stat.)) ns χ² / ndof : 1.06 (1st extr) and 0.97 (2nd extr.)

Cross-checks

Timing and baseline corrections

	Blind analysis (ns) 2006	Final analysis (ns) 2011	Correction (ns)	Systematic uncertainties			
Baseline	2440079.6	2439280.9					
Earth rotation		2.2		0 1 1 1 1 1			
Correction baseline			-796.5	Systematic uncertainties	ns	Error distribution	
CNGS delays:				Baseline (20 cm)	0.67	Gaussian	
UTC calibration	10092.2	10085.0		Decay point	0.2	Exponential (1 side)	
Correction UTC			-7.2	Interaction point	2.0	Flat (1 side)	
WFD	0	30		UTC delay	2.0	Gaussian	
Correction WFD			30	LNGS fibres	1.0	Gaussian	
BCT	0	-580		DAQ clock transmission	1.0	Gaussian	
Correction BCT			-580	FPGA calibration	1.0	Gaussian	
				FWD trigger delay	1.0	Gaussian	
OPERA Delays:				CNGS-OPERA GPS synchronisation	1.7	Gaussian	
TT response	0	59.6		MC simulation for TT timing	3.0	Gaussian	
FPGA	0	-24.5		TT time response	2.3	Gaussian	
DAQ clock	-4245.2	-4262.9		BCT calibration	5.0	Gaussian	
Correction OPERA			17.4		0.0		
GPS Corrections:				Total systematic uncertainty	-5.9, +8.3		
Synchronisation	-353	0					
Time-link	0	-2.3					
Correction GPS			350.7				
Total correction			-985.6				
δt = TOF _c -TOF _y = (1043.4 – 985.6) ns = (57.8 ± 7.8 (stat.) ^{+8.3} _{- c} (sys.)) ns							
$(v-c)/c = \delta t / (TOF \delta t) = (2.37 \pm 0.32 (stat_)^{+0.34} (svs_)) \times 10^{-5}$							
		C /		-0.24			

(L=730085 m taking parent mesons average decay point)

Opening the box: result

Only internal muon-neutrino CC events used (5199 events)

$$\delta t = (61.1 \pm 13.2 \text{ (stat.)}^{+7.3}_{-6.9} \text{(sys.)}) \text{ ns}$$

No indication for energy dependence within the present sensitivity in the explored energy domain

Energy dependence

n.e -10000

- Width of few ns: uncertainty on time of the parent proton strongly reduced
- Effect visible on ~ an event-by-event basis
- Check beam related systematics, likelihood procedure

Nov 2011: bunched-beam test

 $\delta t = (62.1 \pm 3.7) \text{ ns}$

with original beam timing : 57.8 ± 7.8 ns

Main contributions to the RMS (16.4 ns):

- TT response (7.3 ns)
- DAQ time granularity (10 ns full width)
- ± 25 ns flat jitter
- The dominant ± 25 ns term is related to the tagging of the GPS signal by the 20 MHz OPERA master clock (RMS = 50 ns/ $\sqrt{12}$ = 14.4 ns).

The statistical accuracy on the average δt is already as small as 3.7 ns with only 20 events (collected in 15 days).

Bunched-beam result

• Large statistics (15k events, 2009-2011), dedicated upgrade of the CNGS and OPERA timing systems, accurate geodesy campaign and of a series of calibration measurements conducted with different and complementary techniques: the most sensitive terrestrial measurement of the neutrino velocity over a 730 km baseline.

• The analysis indicates an early neutrino arrival time with respect to the one computed by assuming the speed of light:

 $\delta t = TOF_c - TOF_v = (57.8 \pm 7.8 \text{ (stat.)}^{+8.3} \text{ (sys.)}) \text{ ns}$ (v-c)/c = (2.37 ± 0.32 (stat.)^{+0.34} \text{ (sys.)} ×10^{-5}

• Energy dependence: no significant effect observed.

• Despite the large significance of the measurement (6.2 σ) and the robustness of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to identify any still unknown systematic effect.

Conclusions

Back-up slides

A. Longhin, Frontiers in Diagnostics Technologies

•

•

•

OPERA read-out scheme

Typical neutrino event time distributions w.r.t kicker magnet trigger pulse =>

- Not flat
- Different timing for the two extractions

 \rightarrow Need to measure precisely the proton spills

From selection to the velocity measurement

Edge regions

CERN-LNGS measurements (different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics (collaboration with CERN survey group)

	Benchmark	X (m)	Y (m)	Z (m)
	GPS1	4579518.745	1108193.650	4285874.215
5	GPS2	4579537.618	1108238.881	4285843.959
	GPS3	4585824.371	1102829.275	4280651.125
	GPS4	4585839.629	1102751.612	4280651.236

LNGS benchmarks In ETRF2000

Cross-check done in June 2011: simultaneous CERN-LNGS measurement of GPS benchmarks

Distance (BCT - OPERA reference frame) = (731278.0 ± 0.2) m

Combination with CERN geodesy

$$L(\delta t) = \prod_{j} w_{j}(t_{j} + \delta t)$$

$$\delta t = (54.5 \pm 5.0 \text{ (stat.)} ^{+9.6} \text{ (sys.)}) \text{ ns}$$

Event-by-event PDFs

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt

High accuracy/stability portable timetransfer setup @ CERN and LNGS

GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter

Correction to the time-link:

 $t_{CERN} - t_{OPERA} = (2.3 \pm 0.9) \text{ ns}$

CERN-OPERA intercalibration cross check

Item	Result	Method
CERN UTC distribution (GMT)	10085 ± 2 ns	Portable CsTwo-ways
WFD trigger	30 ± 1 ns	Scope
BTC delay	580 ± 5 ns	Portable CsDedicated beam experiment
LNGS UTC distribution (fibers)	40996 ± 1 ns	Two-waysPortable Cs
OPERA master clock distribution	4262.9 ± 1 ns	Two-waysPortable Cs
FPGA latency, quantization curve	24.5 ± 1 ns	Scope vs DAQ delay scan (0.5 ns steps)
Target Tracker delay (Photocathode to FPGA)	50.2 ± 2.3 ns	UV picosecond laser
Target Tracker response (Scintillator-Photocathode, trigger time-walk, quantisation)	9.4 ± 3 ns	UV laser, time walk and photon arrival time parametrizations, full detector simulation
CERN-LNGS intercalibration	2.3 ± 1.7 ns	 METAS PolaRx calibration PTB direct measurement

Delay calibrations summary

External events

Correction due to the earliest hit position

Average correction: 140 cm (4.7 ns)

Z correction

Raw BCT signal used, no integration <1% linearity Large bandwidth 400 MHz Low droop <0.1%/µs

Fast beam current transformer

CERN-OPERA inter-calibration cross-check

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt

High accuracy/stability portable timetransfer setup @ CERN and LNGS

GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter

Correction to the time-link:

 $t_{CERN} - t_{OPERA} = (2.3 \pm 0.9) \text{ ns}$