Planck: microwave glasses to study the Universe history

> Aniello Mennella on behalf of the Planck collaboration

> > Dipartimento di Fisica Università degli Studi di Milano

> > > 2nd International Conference Frontiers in Diagnostic Technologies Frascati, 28-30 November, 2011

Light travels at finite speed

Light takes more than 10 billion years to arrive to Earth

We see these galaxies as they were more than 10 billion years ago

Photons in the early universe

- Early universe is a hot and dense expanding plasma
- Photons are coupled to matter via Compton scattering
- At ~300000 yrs T falls below 3000 K and matter becomes neutral
- At that time photons freely travel carrying the "imprinting" of the "baby" universe
- We detect it today as a microwave signal, red-shifted by a factor ~1000

14 May 1964, 11:15 am

1989 - COBE space mission (NASA)

Tiny ripples $\frac{\Delta T}{T} \approx \frac{\delta \rho}{\rho} \approx 10^{-5}$ $T \approx 2.7251 \,\mathrm{K}$

 $T \approx 2.7252 \,\mathrm{K}$

Spherical harmonics

Power spectrum

Large angular scales

Medium angular scales

10000

Small angular scales

 $rac{d\sigma_{
m T}}{d\Omega} \propto \left| \hat{\epsilon} \cdot \hat{\epsilon}'
ight|^2$

- Thompson-scattered light is polarised | | to the incident polarisation
 - To produce average polarisation in the CMB photon (and therefore matter) distribution must have a non zero quadrupole.

Three mechanisms can produce quadrupolar anisotropy

- Scalar perturbations (perturbations of the energy density at last scattering)
- Vector perturbations (matter vortical motions)
- **Tensor perturbation** (metric perturbations, i.e. gravitational waves)

Stokes $Q, U \to E, B$ modes

Three mechanisms can produce quadrupolar anisotropy

- Scalar perturbations (perturbations of the energy density at last scattering)
- Vector perturbations (matter vortical motions)
- Tensor perturbation (metric perturbations, i.e. gravitational waves)

Stokes $Q, U \to E, B$ modes

Three mechanisms can produce quadrupolar anisotropy

- Scalar perturbations (perturbations of the energy density at last scattering)
- Vector perturbations (matter vortical motions)
- Tensor perturbation (metric perturbations, i.e. gravitational waves)

Stokes $Q, U \to E, B$ modes

State-of-the-art

State-of-the-art

Near future

l

Near future

l

Planck space mission

ESA mission

Launched on May 14th, 2009

Scheduled until Jan 2012

Extension approved through 2012

Orbit: L2 Lagrangian point

1.5 million Km

The eye of Planck

The eye of Planck

Spider-web

0

PSF

0

Final Release

High Frequency Instrument

0

0

Bolometer array cooled at 0.1 K at frequencies 100-857 GHz

Polarisation sensitive at frequencies between 100 and 353 GHz Low Frequency Instrument

Radiometric receiver array cooled to 20 K at frequencies

Õ

6

30-44-70 GHz

Single receiver

0

Why so many frequencies?

Angular resolution	Sensitivity	Component separation
7°	140 μK (0.5 deg pixel)	31.5–90 GHz 3 channels
0.22°	13 μK (0.5 deg pixel)	22–90 GHz 5 channels
0.08°	1 μK (0.5 deg pixel)	30–857 GHz 9 channels

Cold is "cool"

Cold is "cool"

Cold is "cool"

The coldest object in space

0.1 K (HFI bolometers)

The Planck cryogenic system

The Planck one-year all-sky survey

(c) ESA, HFI and LFI consortia, July 2010

The first year Planck maps (no CMB)

January 2011 - release of the Planck ERCSC

- Widest frequency coverage of any catalogue produced by a single telescope
- More than 15,000 compact sources (both galactic and extra-galactic, radio and infra-red luminous galaxies)
- Includes sample of 189 galaxy clusters
- Early Cold Core Catalogue (915 clouds cooler than 14 kelvin)
- ~ 25 papers in Astronomy & Astrophysics

Pictor-A radio galaxy

- Bright, nearby radio-galaxy
- Typical power-law spectral distribution due to synchrotron emission from high energetic particles
 - Good fit with existing data

M82 starburst galaxy

IRAS and ISO infrared space telescopes
2.3-m Bok Telescope (USA)
NASA 61-inch Mount Bigelow telescope

- 76-m MKIA Radio Telescope (JBO, UK)
- NRAO Very Large Array (USA)
- WMAP

- Galaxies with high stellar formation rates
- Typical bump at high frequencies due to interstellar dust
- Low frequency power-law radio spectrum
- Extremely good fit of the overall shape

- Galaxy clusters are immersed in hot, rarefied gas (~ 10⁶ K)
- CMB photons interact with electrons by inverse Compton scattering
- Photons gain energy at high frequencies and loose energy at low frequencies
- 189 candidate clusters detected with one year of Planck data

The footprint is colder than the surrounding environment: the cluster casts a *shadow*

A 217 GHz the cluster is invisible

The footprint is warmer than the surrounding environment: the cluster *shines*

PLCK G266.6-27.3 A massive galaxy cluster at z~1

Anomalous microwave emission

Flux density (Jy)

- Anomalous microwave emission: not explained by synchrotron, free-free, or thermal dust emission
- correlated with far infrared (FIR) emission associated with thermal emission from dust grains
- "Spinning dust hypothesis: electric dipole radiation from small rapidly spinning dust grains
- Theoretical models predict a peaked spectrum, in the range 10–150 GHz

Anomalous microwave emission

Flux density (Jy)

- Anomalous microwave emission: not explained by synchrotron, free-free, or thermal dust emission
- correlated with far infrared (FIR) emission associated with thermal emission from dust grains
- "Spinning dust hypothesis: electric dipole radiation from small rapidly spinning dust grains
- Theoretical models predict a peaked spectrum, in the range 10–150 GHz

The Planck "first light" (the first 14 days)

The Planck "first light" (the first 14 days)

Full sky in January 2013

Conclusions

- Planck has started its fifth sky survey as we write. Its focal plane instruments have confirmed and maintained their predicted performance.
- The first public data release has provided a full-sky catalogue of compact, unresolved sources in a largely unexplored frequency range.
 - New galaxy clusters,
 - Stellar formation in cold gas regions
 - Anomalous microwave emission
- First release of cosmological data and results is foreseen by January 2013, and a second one, based on the complete Planck dataset, will happen in early 2014.
- The best still has to come.

Planck Collaboration: ~400 scientists!

Planck Core Team

