
Interaction with the Geant4
kernel – part 1

Luciano Pandola
INFN – Laboratori Nazionali del Sud

A lot of material by G.A.P. Cirrone and J. Pipek

Geant4 Course, XX Seminar on Software for Nuclear,
Subnuclear and Applied Physics,

Alghero, June 5th- 9th, 2023

… User classes (cont'ed)
At initialization At execution
G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction*

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

Global: only one instance exists in
memory, shared by all threads.

Local: an instance of each action
class exists for each thread.
(*) Two RunAction's allowed: one for master
and one for threads

Outlook

 Run, Event, Track, ...
 a word about multi-threading

 Optional user action classes
 Command-based scoring
 Analysis tools (detached slides)

Part I: The main ingredients

Geant4 terminology: an
overview

 The following keywords are often used in
Geant4
 Run, Event, Track, Step
 Processes: At Rest, Along Step, Post Step
 Cut (or production threshold)
 Worker/master thread (for MT)

Run, Event and Tracks

• One Run consists of
– Event #1 (track #1, track #2,)
– Event #2 (track #1, track #2,)
–
– Event #N (track #1, track #2,)

Run
Event 0

Event 1

Event 2

Event 3

track 1 track 3track 2 track 4

track 1 track 3track 2

track 1

track 1 track 3track 2 track 4

The Event (G4Event)
 An Event is the basic unit of simulation in Geant4
 At the beginning of processing, primary tracks are generated

and they are pushed into a stack
 A track is popped up from the stack one-by-one and ‘tracked’

 Secondary tracks are also pushed into the stack
 When the stack gets empty, the processing of the event is

completed
 G4Event class represents an event. At the end of a successful

event it has:
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as outputs)

 G4EventManager class manages the event
 G4UserEventAction is the optional User hook

The Run (G4Run)
 As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
 Within a run, the User cannot change

 The detector setup
 The physics setting (processes, models)

 A Run is a collection of events with the same detector
and physics conditions

 At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

 The G4(MT)RunManager class manages the
processing of each Run, represented by:
 G4Run class
 G4UserRunAction for an optional User hook

The Track (G4Track)
 The Track is a snapshot of a particle and it is represented

by the G4Track class
 It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
 It is updated after every step

 The track object is deleted when
 It goes outside the world volume
 It disappears in an interaction (decay, inelastic scattering)
 It is slowed down to zero kinetic energy and there are no

'AtRest' processes
 It is manually killed by the user

 No track object persists at the end of the event
 G4TrackingManager class manages the tracking
 G4UserTrackingAction is the optional User hook

The Step (G4Step)
 G4Step represents a step in the particle

propagation
 A G4Step object stores transient information of the

step
 In the tracking algorithm, G4Step is updated each

time a process is invoked (e.g. multiple scattering)
 You can extract information from a step after the

step is completed, e.g. in
 ProcessHits() method of your sensitive detector

(see later)
 UserSteppingAction() of your step action class

file (see later)

The Step in Geant4
 The G4Step has the information about the two points

(pre-step and post-step) and the ‘delta’ information
of a particle (energy loss on the step,)

 Each point knows the volume (and the material)
 In case a step is limited by a volume boundary, the end

point physically stands on the boundary and it logically
belongs to the next volume

 G4UserSteppingAction is the optional User hook

The G4Step object
 A G4Step object contains

 The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

 Changes in particle properties between the points
 Difference of particle energy, momentum,
 Energy deposition on step, step length, time-of-flight, ...

 A pointer to the associated G4Track object
 Volume hierarchy information

 G4Step provides many Get… methods to access
information or object istances
 G4StepPoint* GetPreStepPoint(),

The geometry boundary
 To check if a step ends on a boundary, one may

compare if the physical volume of pre and post-
step points are equal

Example: parent track and
process

if (track->GetTrackID() != l)
{

G4cout << "Particle is a secondary" << G4endl;

if (track->GetParentID() == l)
{

G4cout << "But parent was a primary" << G4endl;
}

// Get process information
G4VProcess* creatorProcess = track->GetCreatorProcess();
G4String processName = creatorProcess->GetProcessName();
G4cout << "Particle was created by " << processName << G4endl;
}

}

Example: boundaries

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step starts on geometry boundary" << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step ends on geometry boundary" << G4endl;
}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();

Example: particle info
// Retrieve from the current step the track (after PostStepDolt of
// step is completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic particle, retrieve the particle definition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The dynamic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static
// information like the particle name:
G4String particleName = particle -> GetParticleName();

G4cout << particleName << ": kinetic energy of "
<< (kinEnergy / MeV) << " MeV" << G4endl;

Part II: Optional User Action
classes

Optional user classes
 Five base classes with virtual methods the user may

override to step during the execution of the application
("user hooks“)
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Default implementation (not purely virtual): do
nothing

 Therefore, override only the methods you need.

e.g. actions to be done
at the beginning and
end of each event

Multi-threaded processing of
events

Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts)G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results

User actions in MT mode
Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

G4UserRunAction

MT

void BeginOfRunAction(const G4Run*)
void EndOfRunAction(const G4Run*)
G4Run* GenerateRun()

Uses:
 Book/output histograms and other analysis tools
 Custom G4Run with additional information
 Define parameters

G4UserEventAction
void BeginOfEventAction(const G4Event*)
void EndOfEventAction(const G4Event*)

Uses:
 Hit collection and event analysis
 Event selection
 Logging (e.g. output event number)

G4UserStackingAction

G4ClassificationOfNewTrack
ClassifyNewTrack(const G4Track*)

void NewStage()
void PrepareNewEvent()

Uses:
 Pre-selection of tracks (~manual cuts)
 Optimization of the order of track execution

G4UserTrackingAction
void PreUserTrackingAction(const

G4Track*)
void PostUserTrackingAction(const

G4Track*)

Uses:
 Track pre-selection
 Store trajectories

G4UserSteppingAction

void UserSteppingAction(const G4Step*)

Uses:
 Get information about particles
 Kill tracks under specific circumstances

Registration of user actions
 In multi-threading mode (and sequential),

objects of user action classes must be
registered to the G4(MT)RunManager via a
user-defined action initialization class

 In sequential mode, the actions can also be
registered to the run manager directly (not
recommended)

runManager->SetUserInitialization(
new MyActionInitialization);

runManager->SetUserAction(new MyRunAction);

MyActionInitialization

void MyActionInitialization::Build() const
{

//Set mandatory classes
SetUserAction(new MyPrimaryGeneratorAction());
// Set optional user action classes
SetUserAction(new MyEventAction());
SetUserAction(new MyRunAction());

}

void MyActionInitialization::BuildForMaster() const
{

// Set optional user action classes
SetUserAction(new MyMasterRunAction());
}

 Register thread-local user actions

 Register RunAction for the master (optional)

Also the primary
generator

Part III: Command-based
scoring

Command-based scoring

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring
 no C++ required,

apart from instantiating
G4ScoringManager in

main()

• Define filters
/score/filter/particle <filter_name>

<particle_list>
/score/filter/kinE <filter_name>

<Emin> <Emax> <unit>
currently 5 filters are available

• Output
/score/draw <mesh_name>

<scorer_name>
/score/dump,
/score/list

int main() {
…

G4ScoringManager::GetScoringManager();
…
}

30

G4analysis tools
(detached session)

Geant4 analysis classes
 A basic analysis interface is available in Geant4 for

histograms (1D and 2D) and ntuples
 Make life easier because they are thread-safe

 ROOT is not! Manual text output usually not!
 No need to worry about the interference of threads

 Unique interface to support different output formats
 ROOT, AIDA XML, CSV and HBOOK
 Code is the same, just change one line to switch from

one to an other
 Everything done via G4AnalysisManager

 Singleton class use Instance()
 UI commands available

g4analysis
 Selection of output format is performed by including

a proper header file
 All the rest of the code unchanged

 Unique interface
#ifndef MyAnalysis_h
#define MyAnalysis_h 1
#include <G4RootAnalysisManager.hh>
#include <G4CsvAnalysisManager.hh>

// Use ROOT as output format for Geant4 analysis tools
using G4AnalysisManager = G4RootAnalysisManager;
// using G4AnalysisManager = G4CsvAnalysisManager;
#endif

Histograms

Open file and book histograms
#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{

// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboseLevel(1);
man->SetFirstHistoId(1);

// Creating histograms
man->CreateH1("h","Title", 100, 0., 800);
man->CreateH1("hh","Title",100,0.,10);

// Open an output file
man->OpenFile("myoutput");

}
Open output file

ID=1
ID=2

Start numbering of
histograms from ID=1

Fill histograms and write on
file

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
auto man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs/MeV);
man->FillH1(2, fEnergyGap/MeV);

}

void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
G4AnalysisManager::Instance()->Write();

}

int main()
{
...
G4AnalysisManager::Instance()->CloseFile();

}

ID=1
ID=2

Ntuples
EventID Energy x y

0 99.5161753 -0.739157031 -0.014213165
1 98.0020355 1.852812521 1.128640204
2 100.0734469 0.863203688 -0.277949199
3 99.3508677 -2.063452685 -0.898594988
4 101.2505954 1.030581054 0.736468229
5 98.9849841 -1.464509417 -1.065372115
6 101.1547644 1.121931704 -0.203319254
7 100.8876748 0.012068917 -1.283410959
8 100.3013861 1.852532119 -0.520615895
9 100.6295882 1.084122362 0.556967258

10 100.4887681 -1.021971662 1.317380892
11 101.6716567 0.614222096 -0.483530242
12 99.1083093 -0.776034456 0.203524549
13 97.3595776 0.814378204 -0.690615126
14 100.7264612 -0.408732803 -1.278746667

Ntuples support

 g4tool supports ntuples
 Any number of ntuples
 Any number of columns per ntuple
 Supported types are int/float/double

 For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly
 And take care of thread-safety

Book ntuples
#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
auto man = G4AnalysisManager::Instance();
man-> SetFirstNtupleId(1);

// Creating ntuple
man->CreateNtuple("name", "Title");
man->CreateNtupleDColumn("Eabs");
man->CreateNtupleDColumn("Egap");
man->FinishNtuple();

man->CreateNtuple("name2","title2");
man->CreateNtupleIColumn("ID");
man->FinishNtuple();

}

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples
 File handling and general clean-up as

shown for histograms
#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{

auto man = G4AnalysisManager::Instance();
man->FillNtupleDColumn(1, 0, fEnergyAbs);
man->FillNtupleDColumn(1, 1, fEnergyGap);
man->AddNtupleRow(1);

man->FillNtupleIColumn(2, 0, fID);
man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

More slides…

Output stream (G4cout)

 G4cout is a iostream object defined by Geant4.
 Used in the same way as standard std::cout
 Output streams handled by G4UImanager
 G4endl is the equivalent of std::endl to end a

line
 MT-handling: will display also the threadID

WT1> I am here
WT5> I am here

 Output strings may be displayed in another window
(Qt GUI) or redirected to a file

Example: output on screen
void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

// Collect data
G4Track* theTrack = aStep->GetTrack();
G4DynamicParticle* particle = theTrack->GetDynamicParticle();
G4ParticleDefinition* parDef = particle->GetDefinition();

G4double edep = aStep->GetTotalEnergyDeposit();
G4double particleCharge = particle->GetCharge();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
G4cout
<< "Energy deposited--->" << " " << edep << "
<< "Charge--->" << " " << particleCharge << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " <<

G4endl;
}

Output on screen: an example
Begin of Event: 0

Energy deposited---> 9.85941e-22 Charge---> 6 Kinetic energy---> 160
Energy deposited---> 8.36876 Charge---> 6 Kinetic energy---> 151.631
Energy deposited---> 8.63368 Charge---> 6 Kinetic energy---> 142.998
Energy deposited---> 5.98509 Charge---> 6 Kinetic energy---> 137.012
Energy deposited---> 4.73055 Charge---> 6 Kinetic energy---> 132.282
Energy deposited---> 0.0225575 Charge---> 6 Kinetic energy---> 132.254
Energy deposited---> 1.47468 Charge---> 6 Kinetic energy---> 130.785
Energy deposited---> 0.0218983 Charge---> 6 Kinetic energy---> 130.76
Energy deposited---> 5.22223 Charge---> 6 Kinetic energy---> 125.541
Energy deposited---> 7.10685 Charge---> 6 Kinetic energy---> 118.434
Energy deposited---> 6.62999 Charge---> 6 Kinetic energy---> 111.804
Energy deposited---> 6.50997 Charge---> 6 Kinetic energy---> 105.294
Energy deposited---> 6.28403 Charge---> 6 Kinetic energy---> 99.0097
Energy deposited---> 5.77231 Charge---> 6 Kinetic energy---> 93.2374
Energy deposited---> 5.2333 Charge---> 6 Kinetic energy---> 88.0041
Energy deposited---> 3.9153 Charge---> 6 Kinetic energy---> 84.0888
Energy deposited---> 14.3767 Charge---> 6 Kinetic energy---> 69.7121
Energy deposited---> 14.3352 Charge---> 6 Kinetic energy---> 55.3769

Example: output to an ASCII
file

#include <fstream>

class SteppingAction{
// ...
std::ofstream fout;

};

SteppingAction::SteppingAction() : fout("outfile.txt") { }

void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

G4Track* theTrack = aStep->GetTrack();
G4double edep = aStep->GetTotalEnergyDeposit();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
fout
<< "Energy deposited--->" << " " << edep << " "
<< "Kinetic Energy -->" << " " << kineticEnergy << G4endl;

}

MT

Hands-on session

 Task4
 Task4a: User Actions
 Task4b: Command-based scoring

 http://geant4.lns.infn.it/alghero2023/
task4

	Interaction with the Geant4 kernel – part 1
	… User classes (cont'ed)
	Outlook
	Part I: The main ingredients
	Geant4 terminology: an overview
	Run, Event and Tracks
	The Event (G4Event)
	The Run (G4Run)
	The Track (G4Track)
	The Step (G4Step)
	The Step in Geant4
	The G4Step object
	The geometry boundary
	Example: parent track and process
	Example: boundaries
	Example: particle info
	Part II: Optional User Action classes
	Optional user classes
	Multi-threaded processing of events
	User actions in MT mode
	G4UserRunAction
	G4UserEventAction
	G4UserStackingAction
	G4UserTrackingAction
	G4UserSteppingAction
	Registration of user actions
	MyActionInitialization
	Part III: Command-based scoring
	Command-based scoring
	Diapositiva numero 30
	G4analysis tools
	Geant4 analysis classes
	g4analysis
	Histograms
	Open file and book histograms
	Fill histograms and write on file
	Ntuples
	Ntuples support
	Book ntuples
	Fill ntuples
	More slides…
	Output stream (G4cout)
	Example: output on screen
	Output on screen: an example
	Hands-on session
	Example: output to an ASCII file
	Backup
	User-defined run class
	Multiple user actions
	G4Accumulable<T>
	G4Accumulable – C++ (1)
	G4Accumulable – C++ (2)
	Example: step "deltas"
	Step concept and boundaries

