Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

L. Arsini^{1,2}, B. Caccia³, A. Ciardiello¹, S. Giagu^{1,2}, C. Mancini Terracciano^{1,2} Department of Physics, University of Rome "La Sapienza", Rome, Italy. 2INFN, Section of Rome, Rome, Italy. 3Istituto Superiore di Sanità, Rome, Italy

08/05/2023

Outline

Dose distribution emulation for novel **Radiotherapy** Treatment Plan Optimization:

 Towards the emulation of BLOB, a nuclear interaction model:

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Emulating Geant4 Preliminary results

Graphs for physical system emulation Approach to QMD

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Deposited energy / mass Right dose to the tumor

Minimal dose to healthy tissues

Damages to both:

Healthy tissues

50% of cancer treatments

> **10** million people/year

Treatment Planning Optimization

Choice of directions, energies and intensities of the beamlets

to

Fit dose medical prescription

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Dose deposition estimation Plan Optimisation

Goal ----- Train a Deep Learning model to emulate Monte Carlo

- Both fast and precise
- Relevant for novel therapies: e- FLASH RT, MRT etc.

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Monte Carlo simulated dose

Deep Learning model

 $\tilde{D}_{w}(\rho, \{B\})$

Our Cylindrical Graphs

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Original pooling technique: ReNN-Pool Algorithms 2023, 16(3), 143; https://doi.org/10.3390/a16030143

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Differentiable optimization

Trained Neural Network

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

$f_w(X)$ is differentiable with respect to X

Differentiable optimization

Trained Neural Network

Gradient based optimization

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

$\tilde{f}_{w}(X)$ is differentiable with respect to X

Plan Optimisation $D_w(\rho, \{B\})$ is differentiable with respect to $\{B\}$

Optimize the dose to each organ with gradient descent

Fit with medical prescriptions

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

Preliminary results

Batched generation: up to 0.001 s per beam

Precise:

Voxelized **Global** γ index $\gamma < 1\%$ $\frac{|D_{real} - D_{reco}|}{max(D_{real})}$ < 3% < 5%

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

CT scan

Monte Carlo simulation

Deep Learning emulation

% of voxels 98.52 % 99.04 % 99.21 %

a nuclear interaction model

Towards the emulation of BLOB,

Problems in Geant4 below 100 MeV/u

No dedicated model to nuclear interaction below 100 MeV/u in Geant4

Many papers showed discrepancies:

Braunn et al. : one order of magnitude in 12C fragmentation at 95 MeV/u on thick PMMA target

De Napoli et al. : angular distribution of the secondaries emitted in the interaction of 62 MeV/u 12C on thin carbon target

Dudouet et al.: similar results with a 95 MeV/u 12C beam on H, C, O, Al and Ti targets

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

- Exp. data
- **G4-BIC**
- G4-QMD

[Plot from De Napoli et al. Phys. Med. Biol., vol. 57, no. 22, pp. 7651–7671, Nov. 2012]

Cross section of the ⁶Li production at 2.2 degree in a ¹²C on ^{nat}C reaction at 62 MeV/u.

Lorenzo Arsini - 08/06/2023 XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

14

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Lorenzo Arsini - 08/06/2023 XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

10 0 -10 -20-30 -40 -50

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Up to 10 min per interaction!

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Lorenzo Arsini - 08/06/2023 XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

10 0 -10 -20-30 -40

Complex Physics Simulations

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2002.09405

Github

github.com/deepmind/deepmindresearch/tree/master/learning to simulate.

Videos

https://sites.google.com/view/learning-to-simulate

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Graph Network-based Simulators (GNS)

X^{t_0} (a)

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models $ilde{X}^{t_K}$

Starting simple: emulating QMD

→ a simpler model Starting from:

→ a specific case

Each nucleon is a node of the graph

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Emulating BLOB

• Train a Graph Neural Network to emulate the dynamics

	19
 Export the model in ONNX 	10 -
	5 -
	0 -
 Integrate into Geant4 	-5 -
	-10 -
	-15 - -1

Graph Neural Networks for fast emulation of Monte Carlo and nuclear interaction models

Lorenzo Arsini - 08/06/2023 XX Seminar on Software for Nuclear, Subnuclear and Applied Physics

20

15

Thank you for your attention!

- Deep-Learning-based dose deposition emulation:
 - Both fast and accurate dose estimation
 - Cylindrical Graph Neural Network model: From CT scan to dose deposition
 - Gradient based plan optimization on GPUs
- GNNs for nuclear interaction model emulation:
 - Emulation of the dynamics
 Possible Geant4 integration

