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Disclosure

• Virtual simulations performed and presented here are part of DukeSim virtual 

platform developed at CVIT, Duke University, USA

• Other similar software are Victre, XCIST, …

• Experimental part was performed in Trieste, Italy
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Overview

PART I – computer simulations in medical imaging

• Virtual imaging simulations: how and why to virtual imaging?

• Simulation parts: virtual humans and virtual detectors

• Spectral CT: modeling photon-counting detectors 

PART II – machine learning in medical imaging

• Beyond traditional radiology: density and effective atomic number
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How to virtual imaging?
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Real world

Virtual world



Why to virtual imaging? 
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Technology development

Source type?
What power?

Size of focal spot?

Which detector?
Detector size?

Pixel size?

Geometry?
Magnification?

Couch material?



Why to virtual imaging?
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not anthropomorphic
not disease specific

not diverse
simple

ground truth limited
expensive

dose concern
complex

physical phantoms clinicalvirtual

credibility

credibility

Technology evaluation – virtual imaging trials



Anthropomorphic phantoms: virtual humans 
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body surface organs muscles vasculature skeleton



Intra-organ structures

88Abadi et al, IEEE TMI 2018

Non-parenchyma

Abadi et al,  SPIE 2017

Parenchyma

Abadi et al, IEEE TRPMS, 2018

Bone
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Axial

SagittalCoronal

t = 0 sec

t = 5 sec

4D high-resolution 
voxelized phantoms:

Abadi et al., JMI 2020



X-ray detection: Photon-counting
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Image from Willemink et al, Radiology 2018

Low imaging noise

Uniform energy response

Inherent spectral imaging



E

Polychromatic spectra 
from X-ray tube

Inherent spectral separation
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E Bin #1

E Bin #2

E bin #3

E bin #4



Virtual photon-counting detectors
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Face-on geometry

(high Z materials: CdTe, CdZnTe)

Edge-on geometry

(low Z materials: Si)



Monte Carlo model

• Stochastic X-ray interaction with detector bulk

– an array of 100x100 pixels 

– the Livermore physics list 

– range cutoff 10 μm for CdTe and 1 μm for Si

– 100 000 histories (or events) per run 

– Energy and location of all interactions leading to 

energy depositions were saved in .txt file
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Modeling non-idealities

• Modeling statistical and electronic noise

• Photon-counting (PC) detectors suffer from charge sharing between pixels and 

pulse pileup within the pixel.
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Approach from Taguchi et al, Med Phys 2010

True count 

rate

Probability of 

photons being 

recorded

Probability of m-

th order pulse 

pile-up

Initial 

charge 

cloud



Validation – charge sharing

15

Charge sharing model was validated against experimental data obtained with monochromatic beam 
and  CdTe PC detector in three different analog charge sharing (ACS) modes (62 x 62 x 650 μm).

Neighbor Pixel Inhibit (NPI)
- removes multiple counts

Neighbor Pixel Inhibit and 
summing mode (NPISUM)
- recovers the charge spread

No ACS correction applied



Validation – pulse pileup
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Piled up photons registered as higher energy photon!



DukeSim: CT simulator
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source
bowtie filter

detector

sub-samples of a detector 

element

sub-samples of 

focal spot

- Scanner-specific or -generic:
geometry, spectrum, bowtie filter, detector

- Hybrid
Ray-tracing and Monte Carlo modules

- Tube current modulation

- Several tube voltage options

- Energy-integrating and photon-counting detectors



Primary + scatter signal + noisePrimary signal Primary + scatter signal

XCAT: anthropomorphic chest phantom

Simulation output – CT scan

https://cvit.duke.edu/resource/dukesim-v1-1/

https://cvit.duke.edu/resource/dukesim-v1-1/


PART II
Machine learning in medical imaging - examples



Unsupervised model – SVD (PCA)
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SVD (X) = U Σ V*… … … …

E 1 E 2 E 4E 3

Spectral data 

… …

U
1

U
2

… …
U

4

U
3

Left singular vectors

Singular values

Right singular vectors

What is the main contribution to 
image formation?



Beyond traditional radiology: ρ and effective Z  

• Use spectral measurements to compute material properties.
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Vrbaski, S., Longo, R. & Contillo, A. Medical Imaging 2022: Physics of Medical Imaging vol. 12031 (2022).



Why ρ/Zeff?

• Breast tissues can be better differentiated based on their density and effective Z, 

rather than using just gray levels.
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Vrbaški, S. et al. Phys. Med. Biol. (2023) doi:10.1088/1361-6560/acdbb6.

https://doi.org/10.1088/1361-6560/acdbb6


University of Trieste

Contact: stevan.vrbaski@phd.units.it

Thank you!
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