

Simulations & ML in medical imaging

Stevan Vrbaski

Elettra Sincrotrone Trieste

- Virtual simulations performed and presented here are part of DukeSim virtual platform developed at CVIT, Duke University, USA
- Other similar software are Victre, XCIST, ...
- Experimental part was performed in Trieste, Italy

PART I – computer simulations in medical imaging

- Virtual imaging simulations: how and why to virtual imaging?
- Simulation parts: virtual humans and virtual detectors
- Spectral CT: modeling photon-counting detectors

PART II – machine learning in medical imaging

• Beyond traditional radiology: density and effective atomic number

How to virtual imaging?

Real world

Virtual world

Why to virtual imaging?

Geometry? Magnification?

Source type? What power? Size of focal spot?

Technology development

Which detector? Detector size? Pixel size?

Couch material?

Technology evaluation – virtual imaging trials

- not diverse
 - simple

complex

Intra-organ structures

Non-parenchyma

Parenchyma

Bone

4D high-resolution voxelized phantoms:

t = 5 sec

Coronal

Abadi et al., JMI 2020

t = 0 sec

Low imaging noise

Uniform energy response

Inherent spectral imaging

Direct conversion to electrical signal

Image from Willemink et al, Radiology 2018

Face-on geometry

(high Z materials: CdTe, CdZnTe)

(low Z materials: Si)

- Stochastic X-ray interaction with detector bulk
 - an array of 100x100 pixels
 - the Livermore physics list
 - range cutoff 10 μm for CdTe and 1 μm for Si
 - 100 000 histories (or events) per run

 Energy and location of all interactions leading to energy depositions were saved in .txt file

Edep_keV	PositionX_	PositionY_mm	PositionZ_mm	DirectionX	DirectionY	DirectionZ	ParticleID	trackID	parentID	eventID	runID	processID
0.8093	-1.84707	-12.321	0.325	0	0	-1	0	1	0	274	0	1
0.75537	-1.84707	-12.321	0.305251	-0.227387	-0.383017	-0.895317	0	3	1	274	0	1
1.06706	-1.9216	-12.4465	0.0118099	-0.804098	-0.450616	-0.387779	-1	4	3	274	0	7
29.1733	-1.92188	-12.4467	0.01162	-0.583075	-0.677499	-0.44835	-1	4	3	274	0	6
1.195	-1.84707	-12.321	0.305252	-0.946756	0.260114	0.189719	-1	2	1	274	0	6
3.5354	-10.048	-5.83849	0.325	0	0	-1	0	1	0	346	0	1
	10 040	F 02040	0 210204	ο Γοράρι	0 500104	0 00010	1	r	1	240	<u>^</u>	

Modeling non-idealities

- Modeling statistical and electronic noise
- Photon-counting (PC) detectors suffer from charge sharing between pixels and pulse pileup within the pixel.

Charge sharing model

Pulse pile-up model

Charge sharing model was validated against experimental data obtained with monochromatic beam and CdTe PC detector in three different analog charge sharing (ACS) modes (62 x 62 x 650 μm).

No ACS correction applied

Neighbor Pixel Inhibit (NPI) - removes multiple counts

Neighbor Pixel Inhibit and summing mode (NPISUM) - recovers the charge spread

Validation – pulse pileup

Piled up photons registered as higher energy photon!

DukeSim: CT simulator

- Scanner-specific or -generic:

geometry, spectrum, bowtie filter, detector

- Hybrid

Ray-tracing and Monte Carlo modules

- Tube current modulation
- Several tube voltage options
- Energy-integrating and photon-counting detectors

XCAT: anthropomorphic chest phantom

Simulation output – CT scan

Primary signal Primary + scatter signal Primary + scatter signal + noise

https://cvit.duke.edu/resource/dukesim-v1-1/

PART II

Machine learning in medical imaging - examples

Unsupervised model – SVD (PCA)

Beyond traditional radiology: p and effective Z

Vrbaski, S., Longo, R. & Contillo, A. Medical Imaging 2022: Physics of Medical Imaging vol. 12031 (2022).

21

Why p/Zeff?

• Breast tissues can be better differentiated based on their density and effective Z, rather than using just gray levels.

Vrbaški, S. et al. Phys. Med. Biol. (2023) doi: 10.1088/1361-6560/acdbb6.

Thank you!

Contact: stevan.vrbaski@phd.units.it

