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Machine Learning in Particle Physics S

% Unbinned Maximum Likelihood Fits as ML algorithms
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If you are interested in the values on @ then it’s parametric density estimation.

If @is just needed to define a shape, then it’s non-parametric density estimation,
a widely investigated research topic in machine learning.
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Machine Learning in Particle Physics S

% Convergence. Machine Learning is fitting

“Most modern neural networks are trained using maximum likelihood.

This means that the cost function is simply the negative log-likelihood.”

I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning”, MIT Press (2016)

zfit: scalable pythonic fitting %

Jonas Eschle, Albert Puig Navarro, Rafael Silva Coutinho, Nicola Serra

Physik-Institut, Universitit Zirich, Zirich (Switzerland)

zfit provides model building and fitting on https:/arxiv.ora/abs/1910.13429
top of TensorFlow. Aistrent
Statistical modeling is a key element for High-Energy Physics (HEP) analy-
¥ www.tensorflow.org ¥ Traduci questa pagina sis. The standard framework to perform this task is the C++ ROOT/RooFit
TensorFlow toolkit; with Python bindings that are only loosely integrated into the scientific

Python ecosystem. In this paper, zfit, a new alternative to RooFit written in
An end-to-end open source machine learning platform. pure Python, is presented. Most of all, zfit provides a well defined high level
API and workflow for advanced model building and fitting together with an
implementation on top of TensorFlow. It is designed to be extendable in a very
simple fashion, allowing the usage of cutting-edge developments from the sci-
entific Python ecosystem in a transparent way. Moreover, the main features of
zfit are introduced, and its extension to data analysis, especially in the context
of HEP experiments, is discussed.
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Machine Learning in Particle Physics

( Classification

Multivariate analyses have been used in
Particle Physics for many years to classify
signal events from background.

We often design the whole analysis
workflow to provide data-driven samples.
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[ML_INFN Tutorial on Higgs selection with Deep Neural Networks]
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https://confluence.infn.it/pages/viewpage.action?pageId=53906361

Machine Learning in Particle Physics [ML_INFEN Tutorial on Higgs selection with Deep Neural Networks]
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Machine Learning in Particle Physics

X

Development on techniques to improve our capabilities
in the classification task are still very active.

In December 2021, an LHCb-team proposed a new class
of neural networks targeting the exact same problem.

Monotonic Lipschitz Neural Networks

e Robust against small changes (e.g. experimental
instabilities, data/MC discrepancies)

e Monotone with respect to (at least) certain features:
e.g. the higher the transverse momentum the better

G J
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Monotonic Lipschitz Neural Networks,,....

NeurlIPS (2021) [arXiv:2112.00038]
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https://arxiv.org/abs/2112.00038

C Machine Learning in Particle Physics [Mach. Learn.: Sci. Technol. 3 (2022) 035017]
' Parametric Classification  Theaffine architecture

b
—-‘ Linear } @
Loosening the assumptions on at least one m [ —
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another active area of research. p
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https://arxiv.org/abs/2202.00424

Machine Learning in Particle Physics [European Physical Journal C 82 (2022)]

' Classification with domain adaptation

C
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An alternative approach is to use adversarial % g g -
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to contribution Beyond the Standard Model [¢ s
— Model independent searches! g; @
=10
Jd \r
ACHVV)~ }{‘1 Q(;::V’;z Wz}n 2 6V1 6V2 $ azv f*(l) f*(Z)uv agv f‘:‘Sl) f"':(z)u \,z,,pﬁme{ )
A
SM  Physics at BSM scale Heavy Higgs? CP vislation?

Lucio Anderlini (INEN Firenze) April 2023 XX Seminar on Software for Physics, Alghero, Italy > 8


https://arxiv.org/abs/2207.09293

Machine Learning in Particle Physics [European Physical Journal C 82 (2022)]

Xié Classification with domain adaptation

Standard DNN DNN with domain adaptation
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lassifying the unexpected: Anomaly Detection

Machine Learning in Particle Physics

[European Physical Journal C 82 (2022) 3, 275]
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https://arxiv.org/abs/2111.13633

Machine Learning in Particle Physics

Applications include:

e Model-independent searches for
new physics

® Anomaly detection for Data
Quality Monitoring and
Certification

e Validation of MC simulators in
many dimensions

But also...

e Bank fraud detection...

N\

[European Physical Journal C 82 (2022) 3, 275]

. Classifying the unexpected: Anomaly Detection
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Machine Learning in Particle Physics

jon
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_» Before stor
. . . —  hisdml 3-layer pruned, Kintex Ultrascale
Move classification algorithms to hardware z
in g[8 R e = JINST 13 P07027 (2018)
to make them: E —a&— Reuse Factor = 3
% —a— Reuse Factor = 4
. ¥ 401 —=— Reuse Factor =5
e faster (and less energy-consuming) S | == Reuse Factor= 6
® running at fixed latency 2301
Deployment in hardware enables tuning 207
performance, for example: »
® increasing the representation error of ; _ '
. N <8,6> <16,6> <24,6> <32,6> <40,6>
real numbers (fixed-point algebra) Fixed-point precision
e pruning nodes, skipping unnecessary Towards better quality >
multiplications) < Towards faster evaluation
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https://arxiv.org/pdf/1804.06913.pdf

Machine Learning in Particle Physics

' Deployment on hardware, two approaches

Using High Level Synthesis languages Embedding specialized pprocessors in HW

1. Translate your h I 4 I Embed custom ond,
model to C S m “micro-processors” with BN\
2. Use “special JINST 13 P07027 custom instruction set to

compilers” to deploy compiled C on the FPGA.
FPGA (programmable hw devices)

Par. Comp. 109 102873

Code the NN (or any other algorithm)

for those uP, compiling in assembly-like
Industry standard: fast and reliable

Industry standard: commercial Research product: full control of the

) : . software stack (open source
licenses and potential vendor lock-in f 22 )

\_ Y, : :
Research product: will always remain
High Level Synthesis (HLS) is a design methodology that enables the

{4 “ V4
generation of synthesizable hardware designs from high-level descriptions of under active development
functionality. HLS can be used to accelerate applications on FPGAs by using )
C/C++ as the design entry and reducing the development time and effort.
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Machine Learning in Particle Physics

Multiple options are available and are
being explored for deploying ML in HEP
applications (C++ distributed on WLCG).
® project lifecycle; should all be
® throughput; considered for an
e single-call overhead |optimal selection

PyTorch

!“l’
5

TensorFlow 2
=5
=—“
ONNX
Geant4
Gaudi
ROOT

:
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%@ Deployment on software (trigger)

Accelerated Services
MLaaS4HEP

FaaST

Dedicated Runtimes
Tensorflow

C/C++ Torchlib
ONNX

Model complexity & Throughput

C++ libraries
SOFIE/TMVA

LWTNN

C transpilers
keras2c

scikinC

Overhead on single-evaluation
Sy —
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https://github.com/f0uriest/keras2c
https://github.com/landerlini/scikinC
https://onnxruntime.ai/
https://www.tensorflow.org/api_docs/cc
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https://root.cern/doc/master/classTMVA_1_1Experimental_1_1SOFIE_1_1ROperator.html
https://github.com/lwtnn/lwtnn
https://link.springer.com/article/10.1007/s41781-021-00061-3
https://arxiv.org/abs/2010.08556

Machine Learning in Particle Physics

' Deployment on software (trigger)
multiple event batches

. . . =1
Multiple options are available and ar | Accelerated Services
being explored for deploying ML in H| Full-event processing MLaaS4HEP
applications (C++ distributed on WLCGT. Fand

Full-event processing on
very large models;

Reconstruction-level Dedicated Runtimes

® project lifecycl classifiers and Tensorflow
e throughput; | regressors on single ONNQXCﬂTOLhle
e single-call oveA ©biects
= . .
C++ libraries
Real time, fixed-latency SOFIE/TMVA

data processing LWTNN

~PyTorch|

C transpilers
keras2c

scikinC

Ultra-fast simulation
\_

Overhead on single-evaluation
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Machine Learning in Particle Physics

¢

Upcoming future
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Machine Learning in Particle Physics [JINST 11 (2016) 07252]

' Flavour Tagging with custom architectures

— B Dont — B Dot — Untagged NeUtral b mesons are very peculiar in that they can
R e e 1 oscillate while they fly. To study this phenomenon one
needs to tag the flavour of the b meson when it was

produced, and compare it to the flavour when it
decayed.

Decays / (0.04 ps)

Clever architectures were used already in
ante-TensorFlow era to interpret “the other particles”

SS pion

. SS proton
SS kaon (for B?) .——;}”

opposite side

s />‘ 0S kaon
b—c —
b— XU~ \. 0S muon

0S electron
OS vertex charge
0S Charm

Lucio Anderlini (INFN Firenze) April 2023

XX Seminar on Software for Physics, Alghero, Italy


https://arxiv.org/abs/1602.07252

Machine Learning in Particle Physics [Talk at CHEP 2023]
' Flavour tagging with RNNs and DeepSets

Recurrent Neural Networks
Unfold

enabled to extend significantly the @
number of “other particles” V<j- :> v
processed, increasing the tagging GT‘DU
performance.

Unfortunately they are slow.

Deep Sets (which are a special case

Input Output
of Graph Neural Networks) were
shown to outperform RNNs in H‘ — % m @~ 2 b—»f(xl,...,xM)
terms of speed, with the same "l\x "(‘*’\M ) 7
M X

tagging performance

Lucio Anderlini (INEN Firenze) April 2023 XX Seminar on Software for Physics, Alghero, Italy



https://indico.jlab.org/event/459/contributions/11750/attachments/9603/14039/FlavourTaggingAtLHCb.pdf

Machine Learning in Particle Physics [arXiv:1807.08680; arXiv:2304.08610]
' Global-Event Interpretation in the Software trigger
The Run 3 LHCD trigger system () [imsyscs) i dues | Mm

CERN-LHCC-2018-014, LHCB-TDR-018

500X reduction

LHCb raw data " LHCDb storage capacity
15000 PB/year 30 PB/year

’: LHCb trigger: real-time data reduction: 5 TB/s — 10 GB/S‘ L

Graph Neural Networks are being studied also to interpret o v
the whole event in one go: Deep-learning-based Full Event Interprétation (DFEI)
This is crucial for future b-physics experiments at hadronic machines as almost all events
will contain a b quark: triggering will mean “select a part of the event” to store offline.

Selection efficiency of the first prototype is very encouraging, though not yet competitive

with human-tuned, single-decay-mode selection strategies.
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https://arxiv.org/abs/1807.08680
https://arxiv.org/abs/2304.08610

Machine Learning in Particle Physics [arXiv:1807.08680; arXiv:2304.08610]

' Global-Event Interpretation in the Software trigger

B
Do
c == =
o = =
8 — — LCAI
aa = - Particles from Hp 3 e o _
LHCDb raw data S i . — Oo [}
15000 PB/year g E Particles from the rest of the event | 3 >
= 3 Ell =)
N = = o Oo
3 5 El
’=> LHCD trigger: real-time d 'T) — — NP
2 3 R =
Graph Neural N = s “ v,
the whole even e i JEI)
This is crucial fo E 1 RKall events
will containa b 200 300 ge offline.
Selection efficiel ompetitive

with human-tuned, single-decay-mode selection strategies.
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' Generative models for detector simulation
p(X,Y)l

Deep Generative Models can also drastically
speed-up the detector simulation. Discriminator
Generate_d _____ [__

Reference

Instead of computing a shower for each particle lulasi i i Sa,,,,,,e.| || i
i Xy Yo : : % 5 :

hitting a Calorimeter, we can statistically model it (mmmmim e

Generator

E,=202.78 GeV and 6 = 91.12°

GEANT4 150 GAN 0 l X ” R
. : 5 g
10 d
Al
10? °
) 0w
g |10 03 I & ” fe I
> 10 >
10 Sampling Sampling
10°
10-6 -------------
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Machine Learning in Particle Physics

' Ultra-fast (or Flash) simulation

We can be even more aggressive and parametrize both

the detector simulation and the reconstruction

algorithms.

With “ultra-fast simulation” we can achieve speed-ups

O(1000x) with respect to Geant4-based simulation

LHCb Simulation Preliminary [—_] Pythia8 + Geant4

Protons from A — A} u~ T, -+ P. gun + Lamarr

Normalized candidates
g 5 & 3
g 8 8 8
o (=] (=] (=]

10000
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Conditions: 2016 MagUp

Information

[arXiv:2110.07925]

Simulation Analysis Reconstruction

Comparison

Summable digits

Digits Reconstructed

Rawidata Processing
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https://arxiv.org/abs/2110.07925
https://cds.cern.ch/record/2814081/files/LHCB-FIGURE-2022-014.pdf

Machine Learning in Particle Physics [JINST 15 (2020) P0O5009]

% Digital Twins and Bayesian Optimization

Simulation (and fast simulation) can then be exploited to
automate the detector optimization procedure, simulating
Al-chosen detector options (as you would do for Hyperparameter e

Intelligence

Optimization).

= E
For example, the geometry of the double-radiator RICH detector | === | 1::;9-
<l

Detector
’ Simulation

at EIC was tuned using Bayesian Optimization.

Analysis of
high-level

Injection of

Physics

Ederts reconstructed
description range [units] events
mirror radius [290,300] [cm] - r'_,*
radial position of mirror center [125,140] [cm] £31 $105
., longitudinal position of mirror center [-305,-295] [cm] 50 §
=29
o shift along x of tiles center [-5,5] [cm] Bag 5
2] o 2 10
= shift along y of tiles center [-5.5] [em] 927 w
S shift along z of tiles center [-105,-95] [cm] £2° —+— random search £ =~ random search
< Q25 —e— bayesian optimization (GP + —e— bayesian optimization (GP)
= aerogel refractive index [1.015,1.030] © il = 103
©o : b 0 500 1000 1500 2000 0 20 40 60 80 100
aerogel thickness [3.0, 6.0] [ecm] number of observations number of calls

Lucio Anderlini (INEN Firenze) April 2023 XX Seminar on Software for Physics, Alghero, Italy b 23


https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009

Machine Learning in Particle Physics

Further future
(and possibly a bit speculative)

applications
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' Parametric programming for Det

[arXiv:2203.13818]

What if we could use stochastic gradient descent to optimize the detector

parameters themselves?

Clearly, this would require rewriting everything from simulation to analysis

with differentiable programming techniques.

compute via automatic differentiation

T R 4 Y
g Yo | Y2 Y,
I
Ty |xy| - | Xy f @
& PV W 4
SIMULATOR OR NEURAL
APPROXIMATION NETWORK
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https://arxiv.org/abs/2203.13818

' Active learning

Also, instead of tuning the detector
parameters we may leave the Bayesian
Estimation to tune the theoretical models
for which we need simulated samples, to
reduce the number of simulated events
where they do really matter.

This interplay between analysis and
experiment, where the Al decides which
experiment to perform, is named active
learning and we are just beginning to
appreciate its power.

Lucio Anderlini (INFN Firenze) April 2023
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Machine Learning in Particle Physics
[ ] [ ] [ ] [ ] - " gn .
' Probabilistic reconstruction , ., fadrn dentication at (H0h_£a1.120.0019) 222001

= sof-  LHCb
] ) E pHe {55 =110 GeV
We could extend our reconstructed objects with e '
“probabilistic” information. S
=
We already do for covariance matrices for tracking WE 21.4< p <244 GeVie
. e ~100 -
(d=6), we do for hadron identification (d=3), can g Ry l2 0l
=150 =
we do a “d=1000""? O . LA
=200 -100 0 100 DLLpK 200

Imagine that like storing the internal representation of a DNN layer in the reconstructed objects
(e.g. a track), storing probabilistic information on how the track was identified and reconstructed.

Could tune them by building the reco sequence with differentiable programming.

Is that worth the additional storage? And the additional computing effort?
How would we treat that at analysis-level?
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https://arxiv.org/abs/1808.06127

Machine Learning in Particle Physics S

' Large Language Models for code porting and...

Write a python code to download csv data from
https://opendata.cern.ch/record/5209/files/diphoton.csv and plot the histogram of the M variable. Title

the axis "Higgs mass [GeV]".

LLMs are the hype these days.

Here is a Python code that you can use to download the csv data from the given URL and plot the
histogram of the M variable with the specified axis title:

Can we, ethically, benefit from o ponces o2 ps

2.00
import matplotlib.pyplot as plt
? 175
I a n g u a ge l I I O d e I S . url = ‘https://opendata.cern.ch/record/5209/files/diphoton.csv’ 555
data = pd.read_csv(url)
125
plt.hist(data['M'], bins=30) 1.00 1
0.75
° plt.show()
. . . 0504
. VU||E|||g pleeeed“lgs-' 0.25

® Porting code from the current huge code-base for few-threaded processes to HPC
and HW-accelerated environments?

If you have ideas, tet-EhatcPFgenerate-arnrd submit an abstract to the 1st Large Language
Models in Physics Symposium (LIPS)
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' Conclusion

Machine Learning and Artificial Intelligence have been a world-wide hype for 7 years now.

And it’s changing Science. L aed Domain
s —— Materials Science
HEP has robust statistical foundations and traditions, 23'0' — g:;:;try I
and a long history of applying MVA algorithms to a wide %2'5' /
variety of applications. And much has to come. %2'0_ J/'l
T 1.5+
It is important to realize, however, that Science &8’1.0— ,f/
(and especially Fundamental Science) is not about 0.5 5_;\:::_:_::'"‘“‘"‘,;,1/
making things statistically work in most cases, TR i e
but aims at Scientific Understanding. o0 e T

That’s the only hard limit to ML applications to HEP: we deal with digital data since the ‘90s
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