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➔ High Energy Astroparticle Physics: 
Very High Energy Gamma-Ray 
Astronomy

➔ Data flow in large experiments
➔ Feature-based ML and 

Deep Learning
➔ Examples of ML applications
➔ Visualization of data
➔ Data filtering
➔ Problems related to simulated data

List of subjects
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The goal is to understand

➔ The mechanisms of generation of 
energy in the Universe

➔ The creation and propagation of 
energetic particles in the Universe: 
gamma-rays, neutrinos, protons

➔ The nature of Dark Matter

Very High Energy Astrophysics

Methods used

➔ Observation of phenomena through 
ultra-precise and ultra-sensitive 
particle detectors

➔ The analysis of the data acquired is 
often complex for one main reason: 
the signal searched is tiny, compared to 
a huge amount of background



4Astroparticle Physics research

● Gamma-Ray Astronomy
● Neutrino Astronomy
● Gravitational waves
● Cosmic Rays

Multi-messenger Astronomy

Photons
● Travel  in a straight line
● Origin of accelerated particles difficult to identify
● Limited Horizon

Neutrinos
● Travel in a straight line
● Difficult to detect, because they interact very 

weakly
● If neutrinos present, then accelerated protons

Cosmic rays
● Deviated by magnetic fields up to very high 

energy: do not point towards their source
● At very high energy: very rare, require very large 

detection surfaces

Gravitational waves
● Present only for certain types of phenomena



5Use of Machine Learning in Astroparticle Physics

Understanding the Universe through 
the detection of gamma rays & neutrinos 
with imagers, trackers & calorimeters

For a better and faster performance 
of the data analysis, through:

● Parameter regression
● Event classification
● Monte Carlo simulations augmentation

New frontiers:

● Event filtering
● Visualization
● Simulation refinement

Image: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC



6Very High Energy Gamma Ray Astronomy Experiments

● Observations are made:

○ With Imaging Atmospheric Cherenkov 
Telescopes detecting the Cherenkov 
light generated in the atmosphere by 
the passage of highly relativistic 
charged particles

○ Wide field of view detector arrays: 
Surface detectors catching the 
particles in the atmospheric showers

● Gamma rays from astrophysical sources are 
rare, and at the same time we receive a huge 
amount of background events from cosmic 
rays (very similar)

● The amount of data generated can be huge: 
several TB per month



7The H.E.S.S. telescopes

The HESS telescope array is located in Namibia and is a 5-tel array of
Imaging Atmospheric Cherenkov Telescopes detecting the Cherenkov 
light created in the atmosphere by the passage of highly relativistic 
charged particles. 

One of the most crucial steps in the analysis of data, is the suppression 
of the cosmic ray background to extract the “signal” of gamma-rays.



8H.E.S.S. : a very-high-energy gamma-ray observatory  

H.E.S.S.  is one of the three VHE 
gamma-ray observatories of the 
current generation

H.E.S.S. just had a party for its 20th 
anniversary

In operation in Namibia at an altitude 
of 1800 m

Energy interval
50 GeV-100 TeV
In activity since 2003 up to 2024

http://www.youtube.com/watch?v=13meEac3qqs


9H.E.S.S. : gamma-ray detection method



10Preparing an analysis strategy in Astroparticle Physics (classic way, no ML)

Calibration 

Reconstruction of arrival 
direction, Energy, etc 
for all events via the 

minimization of a function
“Goodness of fit” approach

Signal over Background 
Discrimination i.e. 
Fix the analysis cuts, 
through square cuts

Signal Monte Carlo

Background Monte Carlo 

Instrument Response Functions, 
Angular & Energy resolutions, 
Effective areasPreparation

Background Real Data

In VHE Gamma-Ray Astronomy 
now customary that 2 
independent analysis chains 
confirm the results



11Particle acceleration in our Galaxy

Discovery of 252 sources of particle acceleration in our Galaxy and beyond

In our Galaxy :

→ Wind shocks in 
star-forming regions
→ Supernova Remnants
→ Pulsar and Pulsar Wind 
Nebulae
→ Binary systems, Novae



12A new observational window onto the Universe
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● Data taking began 2003-2004
● In 2008 the most luminous sources were 

already discovered 
with standard analysis methods

● Needed a boost in sensitivity 
to see more sources

Possibilities: 

● Hardware: new telescope
● Software: Machine Learning
● Or both!

What I will show here is just 
the gain driven by Machine Learning

H.E.S.S. success story



14Machine Learning versus Programming. And Unsupervised Learning

Programming

● You collect a bunch of data, you apply some known rules, 
and you turn that set of data and rules into the results

Supervised Machine Learning

● We have the data and the results (the labels) and 
we input these into an ML model that produces the rules 
that we want for the programming

Unsupervised Learning

● We do not have rules nor labels in input, so here we only 
have the unlabelled data

● We want to output something about the structure of the 
data (how data cluster, how dense are the structures, or, 
we just want to reduce the dimensionality of data)

Leland McInnes



15Preparing an analysis strategy in Astroparticle Physics (with ML)

Calibration 

Reconstruction of arrival 
direction, Energy, etc 

for all events

Signal over Background 
Discrimination 
i.e. Fix the analysis cuts

Signal Monte Carlo

Background Monte Carlo 

Instrument Response Functions, 
Angular & Energy resolutions, 
Effective areasPreparation

Background Real Data

Unsupervised Learning

Supervised Learning



16Supervised Learning: Classification and Regression

Supervised Learning has two main branches

● In Classification, the output of the model is 
Classes or Categories.

● In Regression, the output of the model is a real 
number 



17Preparing an analysis strategy in Astroparticle Physics (with ML)

Calibration 

Reconstruction of arrival 
direction, Energy, etc 

for all events

Signal over Background 
Discrimination 
i.e. Fix the analysis cuts

Signal Monte Carlo

Background Monte Carlo 

Instrument Response Functions, 
Angular & Energy resolutions, 
Effective areas

Background Real Data

Unsupervised Learning

Supervised Learning

Regression

Classification

Preparation
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Feature-based Machine Learning (“Classic”)

Classification

● Define parameters which differ between the signal 
searched and the background

Regression

● Search for correlations between the value to be 
regressed and the other parameters available

Advantages

● Quick implementation, simple to add new parameters

Disadvantages

● A lot of time spent in feature engineering, and 
important parameters might be missed 

Deep Learning

Classification & Regression

● Define the inputs: 2D maps, time series, graphs
● Define the output

Advantages

● No feature engineering needed, as the relevant parameters 
are learned  internally by the NN

Disadvantages

● Sometimes slow and needing GPUs for complicated tasks
● Need to be sure that the NN is learning what you want it to 

learn (check for pitfalls)

Supervised Learning: Feature-based ML and Deep Learning



19Supervised Learning: Classification and Regression

Supervised Learning has two main branches:

● In Classification, the output of the model is 
Classes or Categories.

● In Regression, the output of the model is a real 
number 
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Extract a rare “signal” in the presence of a large amount of noise, which is equivalent to finding a 
needle in a haystack

Need to develop powerful methods to extract these rare events. 

For most problems, after having cleaned properly the data, the answer is

● event classification through user-defined features

But if you wish to achieve a better classification performance in difficult phase-space regions (where the 
signal is very small, for instance), better to switch to Deep Learning 

Y. Becherini et al., Astroparticle Physics (2011)   M. Senniappan, Y. Becherini et al, JINST (2021)

Supervised Learning: Signal over Background separation (Binary Classification) 
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● Supervised feature-based ML
● Classification of gamma-rays and protons 

using a set of user-defined input variables
● The algorithm performing the separation 

is the Boosted Decision Trees method. 

Gamma/Proton classification in H.E.S.S. data

“A new analysis strategy for detection of faint 
gamma-ray sources with Imaging Atmospheric 
Cherenkov Telescopes”, 
Astroparticle Physics, (2011)

https://www.sciencedirect.com/science/article/abs/pii/S0927650511000673?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0927650511000673?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0927650511000673?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0927650511000673?via%3Dihub
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● The final response of the algorithm to an independent set of data (test data) allows defining an analysis cut 
before looking at the real data. 

● The final analysis cut can be based on a desired gamma-ray efficiency. Example: if I say I will cut at 0.4 on the 
right plot, I will have 95% of gamma-rays and a contamination of less than 1% of protons.

● When the analysis cuts are frozen, you are then allowed to look at the real data.

Gamma/Proton classification in H.E.S.S. data



23Implications of having a better event classification

The Active Galactic Nucleus 
Centaurus A - A very weak source (110 hours of obs) 2008: discovery with a 

detection significance 
of 5𝛔 with standard 
analyses (no ML)

2016: Re-analysis of 
data using supervised 
ML 9.8𝛔 !

Appearance of a 
second source in the 
field of view!

A clear gain in the detectability of weak 
gamma-ray emitting sources



24Deep Learning: Convolutional Neural Networks in H.E.S.S. 

Source

https://www.mdpi.com/2076-3417/10/4/1245


25Programming versus Machine Learning versus Deep Learning for Classification

● For event classification, a clear gain in using 
Machine Learning versus the standard way of 
implementing square cuts in High Energy 
Physics. With relatively small effort, a factor 
of 2 in sensitivity can be reached. 

● Extremely useful for the detection of 
sub-threshold sources (weak emitters)

● Standard Machine Learning working very 
well, but:

● Need to perform Feature Selection
● Only limitation is where the defined 

features do not catch any difference in the 
samples 

● Deep Learning might help in these regions, where the 
human cannot see any difference between the groups

● Typically: regions of low signal, low energies

● Deep Learning might catch slight differences, where the 
human cannot 

● Efforts ongoing, but results show that you need an 
ultra-wide representation of images

● CNNs have been developed, but they show to be 
sensitive to the night-sky-background 

Parsons, R.D., Ohm, S. 
Eur. Phys. J. C 80, 363 (2020)



26Preparing an analysis strategy in Astroparticle Physics (with ML)

Calibration 

Reconstruction of arrival 
direction, Energy, etc 

for all events

Signal over Background 
Discrimination 
i.e. Fix the analysis cuts

Signal Monte Carlo

Background Monte Carlo 

Instrument Response Functions, 
Angular & Energy resolutions, 
Effective areas

Background Real Data

Unsupervised Learning
Generative Models

Supervised Learning

Regression

Classification

Preparation



27Supervised Learning: Classification and Regression

Supervised Learning has two main branches:

● In Classification, the output of the model is 
Classes or Categories.

● In Regression, the output of the model is a real 
number 
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After data are calibrated, we need to perform the 
reconstruction of the kinematics of the gamma ray: 
incoming direction and energy

This can be done with algorithms or using ML 
regression

Regression is a method allowing to estimate the 
value of a variable associated with the signal (or the 
background).  

With the help of simulations and data analysis, 
we can infer what the values expected for a 
particular event are

Supervised Learning: Reconstruction of event parameters (Regression)

Astrophysical source in the sky

What the gamma ray 
would look like 
close to the detector



29Regression of event parameters in the ALTO R&D project

Event energy and height of shower maximum
But also: arrival direction

es
tim

at
ed

 e
ne

rg
y

simulated energy

➔ Standard procedure of feature engineering 
and selection and then neural networks 
(Multi Layer Perceptron)

Better resolution on estimated parameters 
= smaller errors on physical results.



30

➔ Deep Learning of the images (“footprints”) of 
gamma rays in the detectors 

➔ Input images contain calibrated 
footprints, converted to a rectangular 
array using the Oversampling method 
suitable for the Convolutional Neural 
Network 

Regression of event parameters with Deep Learning

Deep 
Learning

Feature-based ML



31Programming versus Machine Learning versus Deep Learning for Regression

● A clear gain in performance in energy 
reconstruction seen with Machine Learning and 
Deep Learning

● The improvement in the incoming direction of 
gamma rays is still uncertain, as standard 
algorithm-based reconstruction methods are 
performing well 

● Deep Learning And especially Graph Neural 
Networks (GNNs) for direction reconstruction in 
Neutrino Telescopes (IceCube, KM3NeT) seems 
much more promising, especially at the lowest 
neutrino energies 

● The uncertainty on the ice and water 
absorption and scattering

● These are not known very well, so Deep 
Learning helps in modelling them  



32IceCube : a neutrino observatory in the antartic ice 

● In activity since 2009
● Size: 1 KM3

● Results start to pop up after  
10 year of data taking 



33Low energy neutrinos from NGC 1068

● Results from November 2022
● Signal significance 4.4 sigma
● The highest up to now

“Evidence for neutrino emission from the 
nearby active galaxy NGC 1068”
Science, 2022

No Graph Neural Networks but 
● Gradient boosted decision tree for 

angular errors (so standard ML)
● CNN for energy reconstruction (DL)



34New frontiers: Problems related to simulated data

Simulated Data
Labelled

ML Training Model

Apply
Model

Real Data
Unlabelled

Results

Scenario 1:
Train on labelled simulated data, 
apply model on real unlabelled data

Simulated Data
Labelled 
(Rare sample)

ML Training
Real Data
Labelled
(Frequent sample)

Scenario 2:
Train on simulated data (Rare sample) 
and on real data (Frequent sample), 
then apply rules on all real unlabelled 
data

Model

Real Data
Unlabelled

Results

Save 
Model

Save 
Model

Apply
Model

But if my Monte Carlo simulations are not representative of my real data?



35New frontiers: Unsupervised Learning

Programming

● You collect a bunch of data, you apply some known rules, 
and you turn that set of data and rules into the results

Supervised Machine Learning

● We have the data and the results (the labels) and 
we input these into an ML model that produces the rules 
that we want for the programming

Unsupervised Learning

● We do not have rules nor labels in input, so here we only 
have the unlabelled data

● We want to output something about the structure of the 
data (how data cluster, how dense are the structures, or, 
we just want to reduce the dimensionality of data)

Leland McInnes



36New frontiers: Unsupervised Learning & Generative Models

Unsupervised Learning

The system tries to learn with no supervision 
(unlabelled data)

Used for:

● Clustering
● Visualization and dimensionality reduction
● Dimensionality reduction & Clustering
● Anomaly Detection and novelty detection 

Generative Models

The system learns dense representations of the input data, called 
latent representation 

Autoencoders

● Learns to efficiently construct dense representations of the 
input data, called latent representation, useful for 
dimensionality reduction and Visualization purposes 

● Acts a feature detector
● Can generate new data that looks very similar to the input 

data.

Generative Adversarial Networks (GANs)

● Can very efficiently generate new data by using two neural 
networks 

○ A generator which tries to generate data that looks 
similar to the training data and 

○ A discriminator that tries to tell real data from fake data
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In physics, in order to perform a measurement and to 
set up the data analysis strategy, we need to simulate 
the physical phenomena and the response of the 
measuring apparatus.

Important amount of computing time, as a lot of 
statistics needed and as they often cannot be 
parallelized.

One way of simulating more data is by adding “noise” 
to the existing data, generating more instances of the 
same data.

New frontiers: Augmentation of Monte Carlo simulations through GANs

A GAN is an ML model in which two neural networks (the 
generative and the discriminator) compete with each other 
to become more accurate in their predictions. 

The purpose of the generative model is to produce new 
data, while the discriminative model learns how to create 
images as similar as possible to the real data.

The result is a more and more accurate simulation of 
images



38New frontiers: refinement of simulations (domain adaptation)

● Setting up a data analysis strategy is based on Supervised 
Learning with Monte Carlo simulations

● The analysis is then applied to real data
● What happens if the Monte Carlo simulations are not able to 

reproduce the real data? Domain shift. The performance of 
the analysis will be degraded. 

● Lengthy study to improve the simulations

OR… Generative Adversarial Networks 

● You allow the Monte Carlo “Refiner” NN to make small 
changes to the signals seen in the detectors 

● The ”Critic” NN  will decide, upon also having the real 
signals in input, if the simulations match the real data or not 
through the loss calculation 

● Step by step, the NN learns how to optimize the simulations 
Erdmann, M., Geiger, L., Glombitza, J. et al. Comput Softw Big 
Sci 2, 4 (2018). https://doi.org/10.1007/s41781-018-0008-x



39New frontiers: refinement of simulations (domain adaptation)

Benchmark:
Energy reconstruction trained 
on simulated data, and 
applied on another set of 
simulated data following the 
same distribution

Application to real data
Poor generalization

Application to real data of the 
refined simulated data training

This shows that the refiner network is able to modify simulations 
to more accurately resemble the data distribution.

Erdmann, M., Geiger, L., Glombitza, J. et al. Comput Softw Big 
Sci 2, 4 (2018). https://doi.org/10.1007/s41781-018-0008-xEnergy reconstruction in the Auger experiment



40New frontiers: Exploring data through Visualization and Clustering 

Calibration Data

Preparation

Visualization and 
Clustering

→ Reducing dimensions from N to 2 or 3 for Data Visualization

Useful for: 

● Visualizing how events cluster in 2D/3D to take decisions, 
as for instance filtering

● Comparing real data with simulations
● Identifying strange (unexpected) behaviour in data for monitoring

Unsupervised/
Supervised
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● “Classic” Machine Learning - a big YES, 
especially in classification tasks

● Deep Learning in gamma-ray astronomy 
- a big MAYBE - more research needed, 
especially to put it in massive production of 
results

● Very useful in neutrino telescopes due to 
the uncertainty of the refractive medium 
response

● A mixture of approaches, as for instance that given 
by Scientific Machine Learning, where you would 
mix previous knowledge with knowledge learned 
by the Neural Network might be more suited

● Machine Learning offers a wealth of possible 
improvements in data analysis

● There is no magic recipe:
○ For classification problems,

feature-based ML largely sufficient
○ For Energy reconstruction 

DL helping, especially at low energies
○ For the regression of the arrival direction: 

hard to beat standard likelihood minimization

● New frontiers: 
unsupervised learning, simulation refinement

Conclusions on Machine Learning for Very High Energy Astronomy


