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Colliders: the answer (question) machine

2 N. KakatiWeizmann Institute of Science

• So what are these 
particles actually?


• What about the Higgs?


• Umm, tell me more…


• Is God real?
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We simulate the collisions with 
physics we know

LHC actually does these collisions
and we get data

• We compare our simulations with the data we get

• This tells us -

• If what we think we know about physics is true!

• If there is new “physics” to look for
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Collision Truth Particles Detector

Detector hitsReconstructed Particles
Analysis

Particle Flow
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Tracker
(Charged particles)

Calorimeter
(Charged particles,
Neutral particles)

• Two approaches for particle flow

• Parameterized particle flow: 
• Provide an optimal measurement 
• exploits the redundancy avoiding 

double counting

• Global particle flow: 
• Provide correct number of particles, 
• their kinematics, and their class 
• exploiting redundancy and avoiding 

double counting
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Already explored in literature

What’s new?

• Focus on dense environments (inside jets)

• Adding the missing physics intuitions (energy conservations)
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Particle Flow
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Truth particles
From

Simulation/experiment

Reconstructed particles
(PFlow objects)

Detector readout
(Tracks, cells)

(Messy environment inside jet)
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Hypergraph Bipartite graph

Nodes Hyperedges

Incidence matrix

Hyperedges

No
de

s
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• Particle Flow = Learning a Hypergraph

Truth particles
(Unknown)

Reconstructed particles

Target Hypergraph Predicted Hypergraph
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Encoding

Encoded data

HE 
properties

ParticlesDetector data
(Tracks, cells)



14 N. KakatiWeizmann Institute of Science

Encoding Learning 

the HG

HE 
properties

HypergraphEncoded data ParticlesDetector data
(Tracks, cells)

Step 1
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Encoding

Detector readout
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Encoding

Detector readout

Graph

Encoded Data

Neural Network

Neural
Network

Neural
Network

=
Combine
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Encoding Learning 

the HG

HE 
properties

HypergraphEncoded data ParticlesDetector data
(Tracks, cells)

Step 2
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Learning the Hypergraph

https://arxiv.org/pdf/2106.13919.pdf

Aligns well with our Physics motivations

https://arxiv.org/pdf/2106.13919.pdf
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G0
G1

GNN

G2

GNN

Gn

. . . GNN

Traget
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Encoding Learning 

the HG

HE 
properties

HypergraphEncoded data ParticlesDetector data
(Tracks, cells)

Step 3
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What about particle properties?

• Learning the Hypergraph - most difficult task
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Learned Hyperedges

NN

Particle properties
( )pT, η, ϕ What now?

• We can already predict the hyperedges (Step 2)

• Getting the particle properties from it should be easy.

• Most trivial solution - 

But is it though?
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Let’s add some more physics…

• We already know a lot about the system.

• Step 2 also tells us a lot about the particles that we want to produce

• Why not use that info!
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TC2

20 GeV

TC1

10 GeV

0.4

0.7

Particle

Topoclusters

8GeV

7GeV

Proxy properties of 

• E = E1 + E2 = 15GeV • η =
7η1 + 8η2

15 • ϕ =
7ϕ1 + 8ϕ2

15

• pT =
E

cosh(η)



Additional network
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Proxy 
properties

  

Neural Network Predicted 
properties

( , class)pT, η, ϕ

(Tracks for charged particles
TC for neutral particles)



Dataset
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• Single jet dataset

• Very dense environment

• No pileup
Graph building
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ECAL1



Cardinality
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• For charged particles, tracks are proxy to 
particles

• Fairly diagonal result for neutral particles



Neutral particles 
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• HG can understand overlapping 
showers more precisely

• Helps in better reconstruction

• Obj cond. and TSPN-SA were two 
other models we were studying

• They lack the physics intuition 
we discussed

Truth - predicted
Truth



Jets
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Improved Resolution!

Truth - predicted
Truth

• Jets are the most important physical 
properties for the current analyses!

• Hypergraph improves the jet resolution

• (PPflow is designed to have better jet 
resolution, can’t predict individual particles)
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Fakes

TC from pure noise Multiple TC

(far away from each other)


from the same particle

Truth TC Reco Truth TC Reco

Inefficiency

Truth TC Reco



What’s next?

• Paper on the way…

• There is still a lot to explore….

• Single jet  Full event

• Train on full event (option 1)

• Or make clusters from TC and tracks, and then run the current model in each cluster (option 2)

• Pileup?

→
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Collision Truth Particles Detector

Detector hitsReconstructed Particles
Analysis

a few ms 

a few ms 

a few ms 

~100 s 
We need millions of such simulations
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Collision Truth Particles Detector

Detector hitsReconstructed Particles
Analysis

Shortcut? 

a few ms 

a few ms 

a few ms 

~100 s 



Shortcut?
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Collision Truth Particles Detector

Detector hitsReconstructed Particles
Analysis

FastSim
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But,…
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Truth pT Reconstructed pT

Detector + reconstruction

Detectors are noisy and stochastic
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Solution? The replicas
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• Replicas
• Same truth event is passed through the detector setup multiple times
• Also reconstructed multiple times
• Different cardinality, different kinematics every time

• Model
• Stochastic initialization

• Loss

• Batch loss

• Explicitly try to minimize the distribution



Dataset
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• Same as before

• But only with charged particles
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Performance
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Still far from perfect, but it’s a good start!
https://arxiv.org/pdf/2211.06406.pdf

https://arxiv.org/pdf/2211.06406.pdf
https://arxiv.org/pdf/2211.06406.pdf
https://arxiv.org/pdf/2211.06406.pdf
https://arxiv.org/pdf/2211.06406.pdf
https://arxiv.org/pdf/2211.06406.pdf
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• Open sourced, Geant4 based calorimeter 
simulation

• Fully configurable with json files (default setup 
mimics ATLAS)

• Current detector simulations are either

• Very accurate but internal and proprietary 
(CMS, ATLAS)

• Open but much simplified (Delphes)

• SCD can be a solution

• Expected to be public very soon. Stay tuned!
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The faces behind all the work
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Big team 

with a lot of people!



Thank you


