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Colliders: the answer (question) machine
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So what are these
particles actually?

What about the Higgs?
Umm, tell me more...

Is God real?

ATLAS

EXPERIMENT

N. Kakati



How do we study them?
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How do we study them?

ATLAS

EXPERIMENT

We simulate the collisions with LHC actually does these collisions
physics we know and we get data

« We compare our simulations with the data we get
e This tells us -
e |f what we think we know about physics is truel

e |f there is new “physics” to look for
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How does it actually work though?
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How does it actually work though?

Collision . Detector
Truth Particles

Detector hits
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How does it actually work though?
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How does it actually work though?

Collision . Detector
Truth Particles
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How does it actually work though?

Collision . Detector
Truth Particles

| | |
e Particle Flow
Selected diphoton sample
L Data 2011 and 2012
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BULLUI I

Data - Bkg

Reconstructed Particles Detector hits

Analysis
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Particle Flow

e Two approaches for particle flow

e Parameterized particle flow:
 Provide an optimal measurement

e exploits the redundancy avoiding
double counting

 (Global particle flow:

 Provide correct number of particles,

 their kinematics, and their class

e exploiting redundancy and avoiding
double counting

Weizmann Institute of Science
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Figure 1: Resolution of Single Pions at 11 = 0 in Calorimeter and Charged Particle Tracking Detectors
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Particle Flow with ML

Object condensation: one-stage grid-free multi—_object
reconstruction in physics detectors, graph, and image data

. . Multi-particle reconstruction in the High Granularity
Jan Kieseler

(jan.kieseler@cern. ch) Calorimeter using object condensation and graph neural
networks

Already explored in literature

CERN, Experimental Physics Department, Geneva, Swi

the date of receipt and acceptance should be | Shah Rukh Qasim'2-*, Kenneth Long'**, Jan Kieseler'-***, and Maurizio Pierini!***** for the
CMS Collaboration, and Raheel Nawaz?

Abstract. High-energy physics detectors, im| ICERN, EP/CMG

object detection. However, while detecting an | 2Manchester Metropolitan University
computer vision, even machine learning assist

End-to-end multi-particle reconstruction in high occupancy imaging

exclusively predict properties on an object-b
either impose implicit constraints on the objs
data or rely on objects being dense and solid.
of assumptions on object size, sorting or ob
structures, such as graphs and point clouds, w
or vertices themselves serve as representatio
clustering in a latent space and confidence aj
object properties with a simple algorithm. As
to a simple object classification problem in inj
signals. The latter results are also compared

Abstract. The high-luminosity upgrad
dented physics and computing challeng
rate reconstruction of particles in even
proton interactions. The planned CM]
fine spatial resolution for this purpose,
also poses unique challenges to reconst
individual particle showers. In this ¢
machine-learning method that perfo
and position regression in one step w
tational constraints. We employ Grav
ject condensation loss function to achi

calorimeters with graph neural networks

Shah Rukh Qasim'-*®, Nadezda Chernyavskaya! ©, Jan Kieseler! ®, Kenneth Long”
Oleksandr Viazlo®©, Maurizio Pierini! ®, Raheel Nawaz’

9

'Experimental Physics Department, CERN
2Manchester Metropolitan University

a method to relate truth showers to req 3Florida State University
energy weighted intersection over unio

4 ;
results show the efficiency of our me SMassachu§etts In_StltuFe of TeChHOIOgy
direction to be investigated further. Staffordshire University
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What’s new?
e Focus on dense environments (inside jets)

* Adding the missing physics intuitions (energy conservations)
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Particle Flow
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Particle Flow

Truth particles
From
Simulation/experiment
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Particle Flow

(Messy environment inside jet)

Truth particles
From
Simulation/experiment
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Detector readout
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Particle Flow

(Messy environment inside jet)

Truth particles
From
Simulation/experiment

Weizmann Institute of Science

OOO
O O

Detector readout
(Tracks, cells)

>

Reconstructed particles
(PFlow objects)
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Hypergraph 101
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Hypergraph 101

Node
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Hypergraph 101
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Hyperedge
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Hypergraph 101

Nodes Hyperedges

Hypergraph
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Hypergraph 101

Nodes Hyperedges

Hypergraph Bipartite graph
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Hypergraph 101

Hyperedges

Nodes Hyperedges ‘ ‘ ‘

Nodes

Hypergraph Bipartite graph Incidence matrix
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Why Hypergraphs?
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Why Hypergraphs?

e Particle Flow = Learning a Hypergraph
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Why Hypergraphs?

e Particle Flow = Learning a Hypergraph

Target Hypergraph Predicted Hypergraph
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Truth particles Reconstructed particles
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Detector readout Detector readout
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The plan
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The plan

Detector data
(Tracks, cells)
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The plan

Detector data
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The plan

Detector data

(Tracks, cells) Encoded data Hypergraph Particles

Weizmann Institute of Science 13 N. Kakati



Step 1

Detector data

E
(Tracks, cells) ncoded data
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Encoding

Detector readout
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Encoding

“ 2= Neural “ O
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Step 2

O
O
Learning
% O the HG
A
O
Encoded data Hypergraph
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Learning the Hypergraph

Recurrently Predicting Hypergraphs

David W. Zhang Gertjan J. Burghouts Cees G. M. Snoek
University of Amsterdam TNO University of Amsterdam
w.d.zhang@uva.nl gertjan.burghouts@tno.nl cgmsnoek@uva.nl

Aligns well with our Physics motivations

https://arxiv.org/pdf/2106.13919.pdf
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Recurrently learning Hypergraph

Traget
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Recurrently learning Hypergraph
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Recurrently learning Hypergraph

Traget
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Recurrently learning Hypergraph

Weizmann Institute of Science 18

Gn
e o o _>
N. Kakati

Traget



Step 3

| O
HE
properties ®
| O
Hypergraph Particles
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What about particle properties?
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What about particle properties?

 Learning the Hypergraph - most difficult task
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What about particle properties?

 Learning the Hypergraph - most difficult task
 We can already predict the hyperedges (Step 2)

 (Getting the particle properties from it should be easy. But is it though?

e Most trivial solution -

O

NN
O e
O

Learned Hyperedges Particle properties

(prs, ) What now?
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Let’s add some more physics...
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e We already know a lot about the system.
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e Step 2 also tells us a lot about the particles that we want to produce
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Let’s add some more physics...

e We already know a lot about the system.
e Step 2 also tells us a lot about the particles that we want to produce

e Why not use that info!
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Proxy properties
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Proxy properties

Topoclusters
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Proxy properties

Topoclusters

. TC2
Particle 20 GeV

Proxy properties of ‘

TC1
10 GeV

e E=E1 +E2=15GeV
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Proxy properties

Topoclusters
. TC2
Particle 20 GeV

TC1
10 GeV

Proxy properties of ‘

_ Tny + 81,

e E=E1 +E2 = 15GeV ° 7 15
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Proxy properties

Topoclusters
. TC2
Particle 20 GeV

TC1
10 GeV

Proxy properties of ‘

_ Tny + 81,

b = 1y + 3¢,

* E=E1+E2=15GeV o« =" 15
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Proxy properties

Topoclusters

TC1

©<0:VO 10 GeV
O

Particle

1C2
20 GeV

Proxy properties of O

e E=E1 +E2=15GeV

K
¢« Fr = cosh(n)

Weizmann Institute of Science
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Additional network

Neural Network Predicted
S —— properties

(prn, ¢, class)

Proxy

properties

(Tracks for charged particles
TC for neutral particles)
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Dataset

e Single jet dataset

 Very dense environment
Graph building

 No pileup
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Dataset

Energy [log[GeV]]
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Dataset
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Cardinality

 For charged particles, tracks are proxy to 38e2
particles
* Fairly diagonal result for neutral particles N
> be?2
< |
' )
=3 =
» g
O . 4e2 7
L
-
-2e2

0123456 7 8 910
n Truth Sup.-Nu.

Weizmann Institute of Science 26 N. Kakati



Neutral particles

~ TSPN-5A
= —0.1, 0=0.36
 HG can understand overlapping 0.06- ﬂ ‘;bj_ ond.
showers more precisely | H=—020=039
O 05 il __l"__L ~ Hypergraph
: u=—0.0,0=0.33
* Helps in better reconstruction I [HL
»n 0.04- _ g
- _
20.03- 7 i
L T i
| 0.02- AL
e (Obj cond. and TSPN-SA were two _
other models we were studying 0.01- -qE'—
* They lack the physics intuition 0.001 - %—
we discussed _'1 -O' 5 O 0'5 1

rel. res. Sup.Nu. pr

Truth - predicted
Truth
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Jets

Improved Resolution!

e Jets are the most important physical L SR s S I
properties for the current analyses! 0.12- -  TSPN-SA
_J_ u= —0.1, c=0.28
» Hypergraph improves the jet resolution 0.10- § — 0 o=028
= 1 — 1260 g 016
n — | u=0.0,0=0.
 (PPflow is designed to have better jet g 0.08 = L
resolution, can’t predict individual particles) S 0.06- ) jﬂ”{EL_
O i _
© _
0.04- ? ==
0.02- L
0.00- J

-1 -0.5 0 0.5 1
rel. res. Cal. Jet pr

Truth - predicted
Truth
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Interpretability
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Interpretability

Tracks, Topoclusters
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Interpretability

 Energy conservation is enforced in the
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Interpretability

Iracks, Topoclusters Predicted particles
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Truth particles
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(\’»» /
0.43 ().5
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Interpretability

 Energy conservation is enforced in the

Truth particles Iracks, lopoclusters Predicted particles prior

A O

~ TSPN-SA
| pu=-0.1,0=0.41
0'08 ’L|_L Obj. cond.
— =00, 0=0.45
H Hypergraph
0.24 . 0.28 PF1 O 06 | ~ u=0.1,0=0.29
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Q33 \./07’}
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\V O . O 2 i IH’LI\

0.00-

/.\ * Asaresult-
— PF2
— 1N, ‘ .088 —

0.04-

arb. unit
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rel. res. Esyp. —nu.
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Interpretability - fakes and inefficiency
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Interpretability - fakes and inefficiency

Truth TC Reco Truth Reco

TC from pure noise Multiple TC
(far away from each other)
from the same particle

—akes
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Interpretability - fakes and inefficiency

Truth TC Reco Truth TC Reco
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O—QO

TC from pure noise Multiple TC
(far away from each other)
from the same particle
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What's next?

 Paper on the way...
e There is still a lot to explore....

 Single jet — Full event

 Train on full event (option 1)

e Or make clusters from TC and tracks, and then run the current model in each cluster (option 2)

 Pileup?
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New problem...
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New problem: Time is expensive!

Collision . Detector
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New problem: Time is expensive!

Collision . Detector
Truth Particles

We need millions of such simulations
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Shortcut?

Collision . Detector
Truth Particles

Shortcut?

Selected diphoton sample
L Data 2011 and 2012
Sig + Bkg inclusive fit (mM =126.5 GeV)

-===- 4th order polynomial

Events / GeV

\s=7 TeV,J Ldt=4.81f"

\s=8 TeV,I Ldt=591fb"

Data - Bkg

Reconstructed Particles Detector hits

Analysis
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Shortcut? FastSim

Collision Detector

Truth Particles

Events / GeV

\s=7 TeV,J Ldt=4.81f"

\s=8 TeV,j Ldt=591fb"

Data - Bkg

Reconstructed Particles Detector hits

Analysis

Weizmann Institute of Science 35 N. Kakati



But,...

Detectors are noisy and stochastic
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But,...

Detectors are noisy and stochastic

Detector + reconstruction
—

Truth pT Reconstructed pT
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Solution? The replicas
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Solution? The replicas

 Replicas
e Same truth event is passed through the detector setup multiple times
e Also reconstructed multiple times

e Different cardinality, different kinematics every time
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Solution? The replicas

 Replicas
e Same truth event is passed through the detector setup multiple times
e Also reconstructed multiple times

e Different cardinality, different kinematics every time

e Model

e Stochastic initialization

e | 0SS
e Batch loss

 Explicitly try to minimize the distribution
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Dataset

e Same as before

e But only with charged particles

Weizmann Institute of Science 38 N. Kakati



Performance
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Still far from perfect, but it's a good start!
https://arxiv.org/pdf/2211.06406.pdf
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The SCD
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Simplified Cylindrical Detector (SCD)

 QOpen sourced, Geant4 based calorimeter
simulation

* Fully configurable with json files (default setup
mimics ATLAS)

e (Current detector simulations are either

 Very accurate but internal and proprietary
(CMS, ATLAS)

e QOpen but much simplified (Delphes)
e SCD can be a solution

e Expected to be public very soon. Stay tuned!
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The faces behind all the work

Francesco A. Di
Bello

Sanmay Ganguly Anton C. Gorbulin

Big team
with a ot of people!

Eilam Gross Lukas Heinrich Anna lvina Marumi Kado Nilotpal Kakati

Patrick Rieck Lorenzo Santi Jonathan Shlomi Nathalie Matteo Tusoni
Soybelman
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Thank you



