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Introduction

The possibility of replacing the Poincaré group (P from now on) with the Bondi-Metzner-
Sachs group (BMS from now on) has a long story. P is the semidirect product of SL(2,C)
(the group of the 2×2 matrices with complex entries and determinant equal to one) which
is the universal covering group of the Lorentz group, with the space-time translations,
which are the vector representation of SL(2,C) and make an abelian group with respect
to vector adddition. As the space of translations is finite dimentional, there is essentially
only one topology that makes P a continuous group without pathological features.

Analogously BMS is the semidirect product of SL(2,C) times the abelian group of
supertranslations, i. e, an infinite-dimensional real vector space Λ of suitably smooth
functions f(θ, ϕ) defined on the sphere S2. The elements of SL(2,C) act on Λ according
to the D2,2 representation of SL(2,C), following the classification of Gel’fand et al.[1].
The space Λ is infinite dimensional, so that the topology that makes BMS a continuous
group is not unique at all.
Therefore the representations of BMS can be quite different according to the topology
to be imposed upon supertranslations.

This situation is akin to that of the representations of the CCR in field theory.
Also, some models for current algebras and some gauge groups in General Relativity
have a structure similar to that of BMS.
Therefore the study of the representations of BMS might be seen as a sidewise approach
to quantum theories of infinitely many degrees of freedom.

The representations of P

We are interested in the unitary irreducible representations (UIRs) of P. Given the simi-
larity in the structure between BMS and P, we first give a shortest account of the UIRs
of P
They were built by E. P. Wigner[2] in 1939.
One first considers the dual space of translations, which is physically interpreted as the
space of momenta. Choesen a particular momentum pA, call it “standard momentum”
the orbit ΩA that contains it is the set of all momenta that can be obtained from pA
transforming it by a Lorentz (SL(2,C)) transformation:

p ∈ ΩA ⇐⇒ ∃g ∈ SL(2, C) , p = gpA . (1)
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Next one finds the “little groups” of the momenta; they are the subgroups of SL(2,C)
that leave invariant some momentum. The little groups of the elements in one orbit are
all isomorphic among them and to that of the “standard momentum” of each orbit.

Table 1: Standard momenta and their little groups, after S. Weinberg, The Quantum
Theory of Fields, with some modification of the notation. The symbol κ is for an arbitrary
positive quantity with the dimension of energy.

Orbit Standard momentum p0 Little Group

(a) p2 = m2 > 0, p0 > 0 (m, 0, 0, 0) SO(3)

(b) p2 = m2 > 0, p0 < 0 (−m, 0, 0, 0) SO(3)

(c) p2 = 0, p0 > 0 (κ, 0, 0, κ) E2

(d) p2 = 0, p0 < 0 (−κ, 0, 0, κ) E2

(e) p2 = −m2 < 0, (0, 0, 0, m) SO(2,1)

(f) p = 0, (0, 0, 0, 0) SO(3,1)

E2 is the group of rototranslations on the two-dimensional plane. Once we know the
little groups and their UIRs, we can build the representations of P, or of BMS.

Infinite dimensional vs finite dimensional spaces

G. W. Mackey (see for example[8]) gave solid footing to the above with the induced
representation theory, of which much can be used to build the UIRs of BMS.
What is remarkable is that if the space Λ is chosen to be countably normed, all the results
of Mackey’s apply [3]. This essentially happens because in such case the structure of BMS
as a space with measure is not too different from that of the finite dimensional cases, say
the Poincaré group.
P. J. McCarthy[5] first studied these representations giving the space Λ a Hilbert L2
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structure and in this case found that only compact little groups (or stability groups) arise,
so that if the UIRs are associated to elementary particles only discrete spin appear.
McCarthy however pointed out that non-compact little groups might appear with a
different topology for Λ.

Little groups

The reason why this might happen is that a little group is defined as a subgroup of
SL(2C) (in our case) that leaves invariant some element (or supermomentum ) in Λ′, the
topological dual of Λ: if the topology of this last space changes, so its dual changes as
well, and elements in it that are left invariant may disappear or new ones may appear.
Accordingly, what was a little group for the previous topology is no longer a little group
for the new topology or the other way around.
In particular, a refinement of the topology of Λ broadens Λ′, so that new invariant
supermomenta with associated little groups may appear.

Topology

It is interesting to consider the case of a “natural” topology for the supertranslation space
(Λ is originally required to be C2). In this sense one might consider topologies such that
the completion of Λ is still smooth only. It is to be remembered that smoothness does
not dictate a specific topology.

We considered[4] supertranslation spaces of functions on the sphere S2 that are con-
tinuously differentiable up to order k, 0 ≤ k ≤ ∞ (Ck(S2) spaces), each space with the
topology of uniform convergence on compacta of the functions together with their first
k derivatives, or to any order if k = ∞.
It is remarkable that with this topology non compact little groups are allowed for C2(S2)
and that if supertranslations are treated as Ck(S2) with the mentioned topology, the
little groups, at least the connected ones, are the same as for the k = 2 case.
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Differential equations

The little group of a supermomentum F ∈ Λ′ is, by definition, a subgroup of SL(2,C) that
leaves F invariant, so that, if the little group is connected, its generatorsMi annihilate F :

MiF = 0 i = 1, . . . n , (2)

where n is the dimension of the Lie algebra.
These equations can be translated into a set of 2n differential equations in the following
way.

Functions on the sphere

In order to define differentiable functions on the sphere S2 at least two local charts are
needed. These can be provided by two stereographic from two opposite poles, North
and South, onto the respectively opposite tangent planes (from the North pole onto the
tangent plane in the South pole and the other way around).
It is useful to pass from the real coordinates of these two planes, {x , y} and {u , v}, to
the corresponding complex conjugate coordinates {z , z} and {w ,w}, where

z = x+ iy ; w = u+ iv (3)

and a is the complex conjugate of a.
A function Π on the sphere can be represented by a couple of functions fN(z , z) and
fS(w ,w) such that the equality holds:

fS(w.w) = fN(
1

w
,
1

w
) ∀w ̸= 0 . (4)

The function fN is the representative of the function in the north pole chart, fS is the
representative for the South pole chart and condition (4) is the requirement that the two
functions fN and fS define one and the same function Π on the sphere.
A function Π on S2 is Ck(S2) iff both its local representatives fN and fS are Ck(R2).
One can introduce a topology on the space of the functions on the sphere such that a
sequence of functions Πn converges to 0 iff both sequences fN

n and fS
n converge to 0 on

any compact subset of R2. This can be implemented by introducing suitable norms that
make Ck(S2) a Banach space or C∞(S2) a countably normed nuclear space, because the
sphere S2 is compact.
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Distributions on the sphere

The dual spaces are built by means of a Ck (k = ∞ possibly) partition of unity (as
suggested to us by G. Talenti[7], [6]), i. e. a couple of Ck(S2) functions Ψ1 and Ψ2 such
that the North pole does not belong to the support of Ψ2, the South pole does not belong
to the support of Ψ1 and for any point in S2 the equality holds:

Ψ1 +Ψ2 = 1 . (5)

This condition is then transferred to the representatives of Ψ1 and Ψ2 in the North and
South pole local charts.

Any distribution F on Ck(S2) defines two distributions FN and F S on Ck(R2) in the
following way:

(F,Π) = (FN ,ΨN
1 f

N) + (F S,ΨS
2 f

S) , (6)

where, if the suppport of Π contains neither the North nor the South pole, the equality
must hold:

(FN , fN) = (F S, fS) . (7)

On the other hand, if FN and F S are any two distributions on Ck(R2) that satisfy
condition (7) they define a unique distribution on Ck(S2) by means of equation (6)
independently of the chosen partition of unity.
We remark that in this scheme the regularization of functions at infinity is not needed
at all; this regularization is instead a shortcoming of other approaches.

Differential equations again

A generator Mi of the Lie algebra of a connected continuous subgroup of SL(2,C) is
implemented by two differential operators, each one for a local chart, MN

i and MS
i , each

acting on the distributions on Ck(R2).
Therefore the problem of solving equation (2) for the generator Mi for distributions

on Ck(S2) is transformed into that of solving two differential equations

MN
i FN = 0 ; MS

i F
S = 0 (8)

for distributions on Ck(R2) for the North and South pole charts, and looking for those
solutions of the two equations that coincide on the functions whose support contains
neither the North nor the South pole, i. e. that satisfy equation (7).
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A connected little group is then generated by the maximal subset of generators that
satisfy equations (8) for some couple FN and F S of distributions on Ck(R2) that also
satisfy equation (7).

Some notation

In the following we drop indices N and S understanding that a function depending on
{z, z} is the North chart representative, a function depending on {w,w} is the South
chart representative.
Some notation follows.
Mi,j The generator of rotations in the {i, j} plane.
M0,i The generator of boosts along the space direction i.
r the absolute value of z: r = |z|.
α the argument of z, z = r exp(iα).
a, b, c arbitrary real constants.
s an arbitrary complex constant.
p, q arbitrary integer numbers.
F (n)(x) the n-th derivative of the distribution F with respect to the argument x.
F (p,q)(z, z) the p-th derivative with respect to z and the q-th derivative with respect

to z of F .
Reg f(z, z) the regularization of the function f in the origin.

List of the little groups

Madamina il catalogo è questo
delle belle che amò il padron mio.
Un catalogo egli è che ho fatt’io;
osservate leggete con me.

We list the little groups together with the implementation of their generators and the
associated invariant distributions in the North pole chart.
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1. Non compact.

M0,3 = −3i(1 + r2)−1(r2 − 1) + z∂z + z∂z ;

F = (1 + r2)3G ,

where G is an arbitrary real homogeneous distribution of degree −3.

2. Compact.

M1,2 = i(z∂z − z∂z) ;

(F, f) = (G, (1 + r2)3
2π∫
0

f(r, α) dα) ,

where G is an arbitrary distribution in the variable r only.

3. Non compact.

M0,2 −M3,2 = 3i(1 + r2)−1(z − z)− iz2∂z + iz2∂z ;

F = (1 + r2)3[aReg (z + z)−3 + bδ(2)(z + z)] .

4. Non compact. The infinitesimal generator is M0,3 + ρM1,2, with ρ real positive and
the two generators are given in points 1 and 2. An invariant distribuiton for this
group which is not invariant for larger connected groups is:

F = (1 + r2)3r−3{a cos[p(ρ ln r − c)] + b sin[q(ρ ln r − c)]} ,

5. Non compact.

M0,2 −M3,2 ;

M0,1 −M3,1 = 3i(1 + r2)−1(z + z)− i(z2∂z + z2∂z) ;

F = (1 + r2)3[sδ(0,2)(z, z) + sδ(2,0)(z, z)] .

6. Non compact.

M1,2 ; M0,3 ;

F = a(1 + r2)3z−3/2z−3/2 .
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7. Non compact.

M0,3 ; M0,1 −M3,1 ;

F = a(1 + r2)3(δ(1,0)(z, z)− δ(0,1)(z, z)) .

8. Non compact. This little group is isomorphic to E2, the Euclidean group in two
dimensions.

M1,2 ; M0,1−M3,1 ; M0,2 −M3,2 ;

F = (1 + r2)3[aδ(2,2)(z, z) + bδ(z, z)] .

9. Compact. The little group is SU(2) wjth associated invariant distributions the real
constants.

10. Non compact. The little group is SL(2,R), the Lorentz group in two dimensions.
The invariant distributions F act on the test functions f according to:

(F, f) = (aReg y−3 + bδ(2)(y),

∞∫
−∞

(1 + x2 + y2)3f(x, y) dx ,

where it is more handy to express the distribution in terms of x and y.

11. Non compact. The last little group is SL(2,C) itself, with invariant distribution
F = 0. This has non physical relevance.

Comments

All the listed little groups have at least one invariant distribution for all spaces Ck(S2)
for k ≥ 2 (the solutions for SU(2) and a solution for E2 are distributions for k ≥ 0 as
well).
The conclusions hold for all topologies on the supertranslations that are coarser than
those used here and finer than the weak ones.
It is to be borne in mind that the topology on the supertranslations space should be
such that BMS be at least a topological group. For example, the topology of pointwise
convergence is appealing, but then BMS is not a topological group.
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Alphabet

SL(2,C) the group of 2× 2 matrices with complex entries. It is the universal
covering group of the Lorentz group.

Λ the space of “supertranslations ”, suitably smooth functions Π on
the sphere S2.

{z, z} the complex coordinates on the stereographic projection of the sphere from
the North pole upon the tangent plane at the South pole.
By this projection a function

Π on the sphere is represented by
fN(z, z) on the plane.
{w,w} the complex coordinates on the stereographic projection of the sphere from

the South pole upon the tangent plane at the North pole.
By this projection a function

Π on the sphere is represented by

9



fS(w,w) on the plane.
L2 a space of square summable functions. Ck(S2) the space of continuously
differentiable functions up to order k on the sphere.
Ck(R2) the space of continuously differentiable functions up to order k on the real

plane.
fN(z, z) is in Ck(R2).
fS(w,w) is in Ck(R2).
Ψ1 ,Ψ2 a partition of unity, a couple of functions on the sphere such that
Ψ1 +Ψ2 = 1 holds, plus some additional requirements.
Λ′ the linear topological dual space of Λ.
F an element of Λ′, a “supermomentum ”.
FN(z, z) the representative of a supermomentum in the North pole chart.
F S(w,w) the representative of a supermomentum in the South pole chart.
Mi the generators of the Lie algebra of a subgroup of SL(2,C).
little group , or stability group. A subgroup of SL(2,C) that leaves invariant

some supermomentum F ∈ Λ′.

Transformation laws of supertranslations and supermomenta

If f(z, z) is a supertranslation first perform the transformation:

f(z, z) = (1 + |z|2)−1ϕ(z, z) .

Then it can be seen that the element g ∈ SL(2,C):

g =

∣∣∣∣α β

γ δ

∣∣∣∣
acts on the function ϕ according to:

(gϕ)(z, z) = |βz + δ|2ϕ(αz + γ

βz + δ
,
αz + γ

βz + δ
)

which is explicitly the representation D22 of Gel’fand et al.
A regular distribution represented by the function F acts upon a test function ϕ according
to:

(F, ϕ) =

∫
1

(1 + |z|2)2
F (z, z)ϕ(z, z) dzdz .
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An element g ∈ SL(2,C) acts upon regular distributions according to:

(gF )(z, z) = |βz + δ|−6F (
αz + γ

βz + δ
,
αz + γ

βz + δ
)

The induced representations

Here we show how to build the UIRs of BMS (or P) once the space of supermomenta and
the little groups are known. We set aside measure theory technicalities that though very
important can be dealt with easily in the case supertranslations are given a countably
normed space structure.
We choose an orbit in Λ′, say Ω0, obtained by the application of SL(2,C) to some standard
supermomentum F0. Let G0 be the little group of F0. For any supermomentum F ∈ Ω0

let us choose a unique transformation g0(F ) in SL(2,C) that transforms F0 into F .
Consider the Hilbert space of the square summable functions h(F ) defined on Ω0 with
values in the carrier space H0 of an UIR U0 of G0.
The action D(Π) of a supertranslation Π upon the function h is represented by a phase
factor:

[D(Π)h](F ) = exp[i(F,Π)]h(F ) , (9)

where (F,Π) represents the action of the distribution F on the function Π as given in
equation (6).
Next the action D(g) of an element g ∈ SL(2,C);.

[D(g)h](F ) = U0

(
g−1
0 (F )gg0(g

−1(F )
)
h
(
g−1F

)
, (10)

The argument g−1
0 (F )gg0(g

−1(F ) of U0 is the “Wigner Rotation”; it is an element of G0,
the little group of F0; as said above U0 is a UIR of G0, so that the transformation makes
sense.
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