Milano Bicocca --16 January 2023

Alberto Mariotti (VUB)

Milano Bicocca --16 January 2023

*Luciano has been my master thesis and PhD advisor (in Bicocca from 2004)

- ***Mentor for physics and science**
- *Luciano has been inspirational for a generation of "young" physicists
- ***We all remember his fascinating (and very soft) QFT lectures**

*Many quotes of him that we still remember: "No emotional comments", "Non danno premi Nobel a caso",

Alberto Mariotti (VUB)

Milano Bicocca --16 January 2023

- *Grateful to Luciano for his guiding and mentoring, Luciano guided me to
 - supersymmetry and supergravity
- ***Passion for dynamical SUSY breaking**
- *Luciano: "Look at this paper (ISS '06), it is very interesting"
- *Last years of scientific publications of Luciano with Antonio Amariti,
 - Davide Forcella, Massimo Siani, Gabriele Tartaglino-Mazzucchelli ...

Alberto Mariotti (VUB)

The role of impurities in cosmological first order phase transitions

Alberto Mariotti

Based on arXiv:2203.16450 (Phys. Rev. Lett. 129 (2022) 26, 261303) with Simone Blasi

Luciano Girardello Memorial

Milano Bicocca 16 January 2023

Page 1 of 1

******Probe of Early Universe cosmology*

★*In the Standard Model, QCD and EW PT are not first order*

First Order Phase Transition would be signal of BSM physics

* First order EW PT can lead to electroweak baryogenesis

* New first order PT in dark matter sectors

* FOPT are powerful sources of stochastic GW signal

fig. from arXiv:1705.01783 D. Weir

Target for current and future GW experiments

- + Ligo Virgo Kagra
- + NANOGrav
- + LISA
- + Einstein Telescope
- + Cosmic explorer

★First Order Phase transition (FOPT) proceeds with bubble nucleation★Nucleation condition in homogeneous Universe

* Phase transition described by effective potential
* Thermal fluctuation induces nucleation of bubbles
* Nucleation rate/volume set by O(3) bounce action

 $\gamma_V(T) \sim T^4 e^{-S_3(T)/T}$

* Nucleation condition sets nucleation temperature

 $\gamma_V(T_n) \sim H(T_n)^4$

Homogeneous Universe in false vacuum

... however ... impurities

★Impurities drastically modify the nucleation process

... however ... impurities

★Impurities drastically modify the nucleation process ... also in cosmological phase transitions ...

- * "Monopole and Vortex dissociation and decay of the false vacuum" Steinhardt 1981
- * "Impurities in the Early Universe" Hosotani 1982
- ***** "Cosmic separation of phases" *Witten 1984*
- * "Phase transitions induced by cosmic strings" Yajnik 1986

wall or n

3005

* Topological defects (strings, monopoles ...)

Alberto Mariotti (VUB)

Luciano Memorial

Fig

Impurities in FOPT

8

★What is the origin of the topological defects?

*Remnants of PT depending on vacuum manifold topology [Zel'dovich et al. '74, Kibble '76]

★Higgs (h) plus Singlet S with a $\mathbb{Z}_2: S
ightarrow -S$

★*The electroweak phase transition occurs in two steps*

Alberto Mariotti (VUB)

Luciano Memorial

★ Domain walls are formed in first step!

 $2 \rightarrow -2$

* Disconnected vacuum manifold after first step

***** Walls are formed at boundaries between different domains

Transient defects Transient defects

★They can act as seed for the second step of the PT, when EW symmetry is broken

Minimal realization of seeded EW phase transition

Alberto Mariotti (VUB)

11

 $\pm v_S$

Luciano Memorial

★Nucleation probability enhanced at the DW location

O(2) symmetry on the DW plane

* Nucleation rate/surface set by O(2) bounce action

$$\gamma_S \sim T^3 e^{-S_2/T}$$

* Seeded nucleation condition

$$\xi \gamma_S \sim H^3$$

Alberto Mariotti (VUB)

★Nucleation probability enhanced at the DW location

O(2) symmetry on the DW plane

* Nucleation rate/surface set by O(2) bounce action

 $+v_s$

Thin wall approximation

Kaluza Klein reduction method

★Study 3-dimensional theory on the domain wall

- *** KK spectrum contains massive localized states gapped to a continuum**
- ***** Bound states correspond to localized profiles in the z-direction
- ***** Scattering states correspond to continuum

✦ Metastability of DW controlled by the 3d h mass

 $\omega_0^2(T) < 0$ Classical instability of DW

 $\omega_0^2(T) > 0 \ \frac{\text{Classically stable DW}}{\text{Seeded Tunnelling at T<Tc}}$

Kaluza Klein reduction method

★Study 3-dimensional theory on the domain wall

- *** KK spectrum contains massive localized states gapped to a continuum**
- ***** Bound states correspond to localized profiles in the z-direction
- ***** Scattering states correspond to continuum

Bounce action

Homogeneous nucleation would happen here

★ PT via nucleation on the DW always dominates

Bounce action

Homogeneous nucleation would happen here

★ PT via nucleation on the DW always dominates
 ★ Completely new phenomenology of EW PT
 ★ Strong impact on parameter space

Alberto Mariotti (VUB)

Luciano Memorial

Milano Bicocca --16 January 2023

* Thanks to Luciano for his legacy

Alberto Mariotti (VUB)