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One Main Message

The average geodesic distance is not a geodesic distance.
It is generally non-additive

d(z,y) = V{(d*(z,y))

7 gﬂy(x) such that d(x, y) is the geodesic distance of gﬂy(x)

The metric is not enough!



In this talk: Quantum gravity # UV

| just want to consider a superposition of metrics lI’[hl-j(x), o]
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In this talk: Quantum gravity # UV

| just want to consider a superposition of metrics lI’[hl-j()c), o]

oy
~ o e
X
One known difficulty (gauge invariance) “*;X}\i Ty
Is that we need to establish which — T

5‘
Z (0 e o e o —

point corresponds to which within the T Y
elements of the statistical ensemble - A, .
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Asymptotically flat: o ~ (out|in) /

Asymptotically AdS:  lim (¢p(x)...¢(x,)) /

r— 00

Venturing inside the bulk r— o0

X1
Prescription: start from x; and move ——
orthogonally inside AdS. AdS
Follow the geodesic for 3.5 Km boundary

| will use timelike geodesics
58;41/ — ()
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Minkowski space is traversed by a gravitational wave at x0 =3
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Invitation: free falling into a GW superposition

Minkowski space is traversed by a gravitational wave at x0 =3

XO

Classical solution >~ coherent state \l//l)

Wave with different polarization |y )

Quantum superposition |y) = ¢, |y;) + ¢ |y,) + ...



Srinckmann coordinates: positions undetermined

Observer initially at rest

: x1

MinkowsKi



Use Observers to define position!! (Rosen coord.)

Label the observer with its
Initial Minkowski coordinate

z B!
= (x%, %)

\

Use its proper time

MinkowskKi



Gedanken experiments!

~ 0

— X sends a photon at time x
— What's the probability that " detects it at time y"?

—_ —_

t X Y

MinkowsKi



Gedanken experiments!

Geometrical optics approx: photons follow geodesics

MinkowsKi
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A proxy for causality:

d(z,y) = V(d?(z,y))

Assumptions/hope: LL“physical coordinates”
(1) (yo) is well approximated by d(x, y) =0

_ Y
2) ([A(x), B(y)]) vanishes across d(x,y) = 0
— s ‘ !
XL R ’
P
'O
“Average light cone structure” o dxy) =0

xO



A proxy for causality:

d(z,y) = (d*(z,y))

More precisely, we should consider { f(d*(x, y)))

e.g. (G x,y))

“Average light cone structure”




A proxy for cau

Anomalous geometry/causal structure:

d(x, y) is non-additive
oordinates”

“Average light cone structure” o dx.y) =0

mo



A theory for the observers: pressure-less fluid

Dubovsky, Gregoire, Nicolis, Rattazzi, 2006

1

5 = 16w

/d4a:\/—gR — ,u4/d4a:'\/—g\/det(g“’/8ux16,/xj) + S|P + ...

— The three scalar fields xl, xz, x> label the observers.

— x! = const. is a geodesic on each classical solution

— X! = x": unitary gauge. \If[hl-]-(Xi),xi(Xk), ] o ‘PU[hl-j(xI), o]

— If no vorticity initially — N' = 0, x0 proper time of the observers

gupdatda” = —dt* + ~;;dz’ da’



Additivity and lack thereof

Basic idea: geodesic distances are integrals of a line element
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Additive: Subadditive: Superadditive:
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Additivity and lack thereof

Basic idea: geodesic distances are integrals

Third point problem (Euclidean signature):
given d(x, z) and 0 < R < d(x, z): Find a third point y s.t.

Similar to chordal distances

~

T

T ————
Additive: ___Subadditive: Superadditive:
only one solution “=horsoidtiont infinite solutions



et me give you a distance d(x, y)

d(x,y) — gﬂy(x) Always possible

1 0 0

— - 2
g,LLl/('T) - 2 y11_>:[% 8$'U’ ayyd (Qj,y)

g,,(x) = d(x,) Only if d(x, y) is additive

Chordal distance analogy
g,, / intrinsic geometry. But need more to calculate d(x, y)



The Third-Point-Problem: differential version

z
y/R—>O

Additivity = the gradient of d(x, z) in z has unit norm



A measure of non-additivity

1 0d*(z,y) 0d*(x,y)
4 Oyt oyY

Clz,y) = 9" (y) — d*(z, y)

Additive: Subadditive: Superadditive:
C=0 C<O0 C>0



Solutions to the TPP: Euclidean signature

Character Example (e > 0) Solutions Sketch
Additive d*(z1, o) = Az’ One point
ot 9 ——> 2 ——>2 .
Subadditive d*(z1,x2) = Az [1 —eAzx ] No solution
. 0 —> 2 ——>2 Codimension-two
Superadditive  d*(x1,z9) = Az [1 + e Ax ]

surface




Solutions to the TPP: Lorentzian signature

Character

First two points

Solutions

Sketch

Codimension-two

2
e surface
Additive (C = 0) (2, 2) = 0 One-dimensional
e.g. d(z1,32) = —(Az)? + Az ’ curve
d*(z,z) <0 One point
Codimension-two
2
¢ 0 surface (\
Subadditive (C < 0)
o = d*(z,2) =0 No solution
&(z1, ) = —(Az0)? + Az [1 - esz] (#2)
d*(z,2z) <0 No solution
&2(z,z) > 0 Codimension-two
surface
Superadditive (C > 0) ) e
o e dilz. 2) —
dz(ivl, To9) = —(Anr:o)2 + Aa:z [1 +elAx 2] (z,7) surface
&(z,7) <0 Codimension-two

surface




Solutions to the TPP: Lorentzian signature

Character

First two points

Solutions

Sketch

Codimension-two

2
B surface
e i) E(z,2) =0 One-dimensional
e.g. d*(z1,72) = —(Az%)? + Az’ ’ curve
d*(z,z) <0 One point
Codimension-two -
d*(z,z) >0 (\

Subadditive (C' < 0)
P (z1,35) = —(A®)? + Az [1 - eA—’xz]

surface

No solution

d*(z,2z) <0 No solution
Codimension-two
‘ Crd e surface
Superadditive (C > 0) : c:
T —_— d Tr,z)=
dz(ivl, To9) = —(Anr:o)2 + Aar:2 [1 +elAx 2] (z,7) surface
22 (z,2) <0 Codimension-two

surface




Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

174 1 174 1 87 174 o
d*(0,z) = gatz’ + o ur,p xhax? 2P — B (ga[gFWF[B)O — 20,0, p0 ) TH T P27 + O(2°)
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Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

1 1 ¢ \
<d2 (O, :E)>=<9W>c“a:’” i Xg,uz/,>x'uxl/xp _ E — %,uu,pa)) ot xPx’ + O(gj5)

We want to evaluate d(:L‘, y) — \/<d2 (377 y)>

The unitary gauge coordinates x drop from averages

Terms higher than linear cannot be reproduced by an average metric

1 — X (87 1 74 o
C(0,2) = 7 (§°° (Cagu){Tp0) — (90sT5, T5)) 242”2027 + O(a)



Result in Euclidean signature:

Average distances always subadditive

Similar to chordal distances




gupdztdz” = —dt?® + vijdx' da’

Lorentz signature (unitary gauge)

L1
117 ((Vigyw) — (ig) (ue)) *a? 22

— (<qu7pi7qj> — P <7pi><7qj>) t*x"
— 2 (T2 Apk) — FPU(Cpij) (Ygr)) t ' a? "

— (WP i Tty — APUT pij) (Lgrr)) 2! 2 at]

O —

— No non-additivity along time (x = 0).



g dxtdz’ = —dt* + v ;dz'da’

Lorentz signature (unitary gauge)

L1
117 ((Vigyw) — (ig) (ue)) *a? 22

5 (<7pq7pi7qj> g <7pi><%j>) v
— 2 (T2 Apk) — FPU(Cpij) (Ygr)) t ' a? "

— o Lol e L)) xixjxkxl] )

O —

— No non-additivity along time (x = 0).

— Negative definite pieces



guvdatda” = —dt® + ~;;da’ da?

Lorentz signature (unitary gauge)

C:4

— No non-additivity along time (x = 0).
— Negative definite pieces

— Positive definite



—xamples:
— Superposition of plane waves: C < 0

— Fluctuations around homogeneous background: C < 0

T4
Thermal state of gravitons: C(0,x) ~ WAx4
P
Mp
effect importantat £ ~ —
T2

1
— FRW: C <0 if w>—§



Causality

Given (d*(x, y)) one can define a metric tensor (&) = &

1 0 0

_ L . 2
g,ul/(x) — _5 yh—I>Izlc Ot 8y,/ <d (xvy»

But there is more to (d*(x, y)) than (&) !

(8,,)Ax"Ax* = 0: where we expect the photon to be detected
in the immediate vicinity of the emission.

Further away: see where (d*(x,y)) = 0



Subadditive causality (C < 0)

§,LW

4’—
-

‘f
'f
-




Subadditive causality (C < 0)
1 0d*(z,y) 0d*(x,y)

C(xvy) — 4

uv L d2

g,ul/

-
-
-
" g
L
"
e’
L

Two causal structures at play. One rigid defined at each point. One
dependent on the two extremes x and y.
Photons are "prompt” wrt the rigid structure given by S



Subadditive causality (C < 0)
1 0d?*(x,y) 0d*(x,y)

C(xvy) = Z ay'u 8yy

G 9" (y) — d*(x,y)

4"
-

’f
'f
-

This is not the trajectory
of any light ray.
It is just where the ensemble
of events where we expect
to receive it

Two causal structures at play. One rigid defined at each point. One
dependent on the two extremes x and y.
Photons are "prompt” wrt the rigid structure given by S



Superadditive causality (C > 0)

T<y Ny=<z + T <z

Conjecture: Subadditivity the outcome of evolution
from relatively “standard” initial conditions



Aside: Special Relativity 2.0
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Aside: Special

Relativity 2.0

MinkowskKi




Aside: Special Relativity 2.0

S x' X2 ()

P(a'|x)

How does d(x, y)
transform?

MinkowskKi



Conclusions:

* [he metric is not enough!
» Effect generically small in perturbative situations
* A lot of potential applications

e New mathematical structures...?






One might expect occasional violations of causality
(because of the fluctuations of geometry) on top of an
otherwise-classical causal structure.

We find instead that the very average d(x, y) is anomalous
and *is not* the geodesic distance of any metric.

The reason is that d(x, y) is non additive
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Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

d*(0,z) = gatz’ + %gW,p xhax? 2P — 1—12 (ga[gl“gyfga — 20,0, p0 ) TH T P27 + O(2°)
We want to evaluate CZ(CLH ?J) — \/<d2 (5’77 y)>

The coordinates x are physical” i.e. independently defined

w—>

1 9 9 The metric tensor defined
Guv(T) = -5 lim 5 B d*(xz,y)  locally with d(x, y) is
’ / nothing else than (g) !

(@(0,2)) = (g (0))aha” + ...
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Geodesic distance can be expressed in a coordinate expansion

1 1
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Non-additivity builds up at large separation. Can we infer about the sign?



Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

174 1 174 1 87 174 o
d*(0,z) = gatz’ + o ur,p xhax? 2P — B (ga[gFWF[B)O — 20, p0 ) TH T 2P + O(2°)

Terms higher than linear cannot be reproduced by an average metric
Uv— po

1
C(O,:E) — Z (§a5<rauV><Fﬁpa> — <gaﬁra o >) et alx? + O(Zﬁ)

Non-additivity builds up at large separation. Can we infer about the sign?

—HQur Q).

Qa — (63 Foz,uu — €8a gaﬁ <Foz,uu>) ztx” 9

C(0,z) =



The Third-Point-Problem: differential version

dy,z) = R

<
y
/ R—=0 g,y =dy,2)- 8‘15;2)7@@'3




The Third-Point-Problem: differential version

dy,z) = R

<
y
/R — 0 d(z,y) =d(y, z) 1 8dé.:;z) n'R

TPP:

d(z,y) + d(y,z) = d(z, 2)

z od(xz,z)
* i =
S

The size of the gradient of d(x, z) in z determines how many
solutions to the TPP: the character of d(x, 2)




