Properties of average distances and emergent causality

Federico Piazza

With Andrew Tolley, 2212.06156 (see also 2108.12362)

Luciano Girardello Memorial, 16/1/2023

Glimmers of a pre-geometric perspective

2005

Federico Piazza

2005

Glimmers of a pre-geometric perspective

Federico Piazza

Let me give you an ``uncle's advice"

~ Work on problems that you can tackle with equations

2021

2005

post-Glimmers of a pre-geometric perspective

Federico Piazza

Let me give you an ``uncle's advice"

~ Work on problems that you can tackle with equations

One Main Message

The average geodesic distance is not a geodesic distance.

It is generally **non-additive**

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

 $\not\equiv g_{\mu\nu}(x)$ such that $\bar{d}(x,y)$ is the geodesic distance of $g_{\mu\nu}(x)$

One Main Message

The average geodesic distance is not a geodesic distance.

It is generally **non-additive**

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

 $\not\equiv g_{\mu\nu}(x)$ such that $\bar{d}(x,y)$ is the geodesic distance of $g_{\mu\nu}(x)$

The metric is not enough!

In this talk: Quantum gravity \neq UV

I just want to consider a superposition of metrics

$$\Psi[h_{ij}(x),\ldots]$$

In this talk: Quantum gravity \neq UV

I just want to consider a superposition of metrics

$$\Psi[h_{ij}(x),\ldots]$$

One known difficulty (gauge invariance) is that we need to establish which point corresponds to which within the elements of the statistical ensemble

Asymptotically flat:

$$\mathcal{A} \sim \langle \text{out} | \text{in} \rangle$$

Asymptotically AdS:

$$\lim_{r\to\infty} \langle \phi(x_1)...\phi(x_n) \rangle$$

$$r \to \infty$$

AdS boundary

$$\delta g_{\mu\nu} \to 0$$

Asymptotically flat:

$$\mathcal{A} \sim \langle \text{out} | \text{in} \rangle$$

Asymptotically AdS:

$$\lim_{r\to\infty} \langle \phi(x_1)...\phi(x_n) \rangle$$

Venturing inside the bulk

Prescription: start from x_1 and move orthogonally inside AdS. Follow the geodesic for 3.5 Km

Asymptotically flat:

$$\mathcal{A} \sim \langle \text{out} | \text{in} \rangle$$

Asymptotically AdS:

$$\lim_{r\to\infty} \langle \phi(x_1)...\phi(x_n) \rangle$$

Venturing inside the bulk

Prescription: start from x_1 and move orthogonally inside AdS. Follow the geodesic for 3.5 Km

I will use timelike geodesics

Invitation: free falling into a GW superposition

Minkowski space is traversed by a gravitational wave at $x^0 = x^3$

Classical solution \simeq coherent state $|\psi_1\rangle$

Invitation: free falling into a GW superposition

Minkowski space is traversed by a gravitational wave at $x^0 = x^3$

Classical solution \simeq coherent state $|\psi_1\rangle$

Wave with different polarization $|\psi_2\rangle$

Invitation: free falling into a GW superposition

Minkowski space is traversed by a gravitational wave at $x^0 = x^3$

Classical solution \simeq coherent state $|\psi_1\rangle$

Wave with different polarization $|\psi_2\rangle$

Quantum superposition $|\psi\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle + \dots$

Brinckmann coordinates: positions undetermined

Use Observers to define position!! (Rosen coord.)

Gedanken experiments!

- $-\overrightarrow{x}$ sends a photon at time x^0
- What's the probability that \overrightarrow{y} detects it at time y^0 ?

Gedanken experiments!

Geometrical optics approx: photons follow geodesics

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$
 The physical coordinates of the physical coordinates of

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$
 The physical coordinates of the physical coordinates of

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

Assumptions/hope:

(1) $\langle y^0 \rangle$ is well approximated by $\bar{d}(x,y) = 0$

(2) $\langle [A(x), B(y)] \rangle$ vanishes across $\bar{d}(x, y) = 0$

"Average light cone structure"

"physical coordinates"

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

More precisely, we should consider $\langle f(d^2(x,y)) \rangle$

e.g. $\langle G_{\text{ret}}(x,y) \rangle$

"Average light cone structure"

tes"

A theory for the observers: pressure-less fluid

Dubovsky, Gregoire, Nicolis, Rattazzi, 2006

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R - \mu^4 \int d^4x \sqrt{-g} \sqrt{\det(g^{\mu\nu}\partial_{\mu}x^I\partial_{\nu}x^J)} + S_m[\Phi] + \dots$$

- The three scalar fields x^1, x^2, x^3 label the observers.
- $-x^{I}$ = const. is a geodesic on each classical solution
- $-X^I = x^I$: unitary gauge. $\Psi[h_{ij}(X^i), x^i(X^k), \dots] \rightarrow \Psi_U[h_{ij}(x^I), \dots]$
- If no vorticity initially $\rightarrow N^i = 0$, x^0 proper time of the observers

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + \gamma_{ij}dx^i dx^j$$

Basic idea: geodesic distances are integrals of a line element

Basic idea: geodesic distances are integrals of a line element

Third point problem (Euclidean signature):

given d(x, z) and 0 < R < d(x, z): Find a third point y s.t.

$$d(x,y) = R, \qquad d(y,z) = d(x,z) - R$$

Basic idea: geodesic distances are integrals of a line element

Third point problem (Euclidean signature):

given d(x, z) and 0 < R < d(x, z): Find a third point y s.t.

$$d(x, y) = R, \qquad d(y, z) = d(x, z) - R$$

Additive: only one solution

Subadditive: no solution

Superadditive: infinite solutions

Basic idea: geodesic distances are integrals

Third point problem (Euclidean signature):

given d(x, z) and 0 < R < d(x, z): Find a third point y s.t.

Additive: only one solution

Subadditive:

Superadditive: infinite solutions

Let me give you a distance d(x, y)

$$d(x,y) \to g_{\mu\nu}(x)$$

Always possible

$$g_{\mu\nu}(x) \equiv -\frac{1}{2} \lim_{y \to x} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}} d^{2}(x, y)$$

$$g_{\mu\nu}(x) \to d(x,y)$$

Only if d(x, y) is additive

Chordal distance analogy

 $g_{\mu\nu} \approx \,$ intrinsic geometry. But need more to calculate d(x,y)

The Third-Point-Problem: differential version

A measure of non-additivity

$$C(x,y) \equiv \frac{1}{4} \frac{\partial d^2(x,y)}{\partial y^{\mu}} \frac{\partial d^2(x,y)}{\partial y^{\nu}} g^{\mu\nu}(y) - d^2(x,y)$$

Additive:

C = 0

Subadditive:

C < 0

Superadditive:

C > 0

Solutions to the TPP: ${\bf Euclidean\ signature}$

Character	Example $(\epsilon > 0)$	Solutions	Sketch
Additive	$d^2(x_1, x_2) = \overrightarrow{\Delta x}^2$	One point	•
Subadditive	$d^{2}(x_{1}, x_{2}) = \overrightarrow{\Delta x}^{2} \left[1 - \epsilon \overrightarrow{\Delta x}^{2} \right]$	No solution	
Superadditive	$d^{2}(x_{1}, x_{2}) = \overrightarrow{\Delta x}^{2} \left[1 + \epsilon \overrightarrow{\Delta x}^{2} \right]$	Codimension-two surface	

Solutions to the TPP: ${\bf Lorentzian\ signature}$

Character	First two points	Solutions	Sketch
	$d^2(x,z) > 0$	Codimension-two surface	
Additive $(C=0)$ e.g. $d^2(x_1,x_2) = -(\Delta x^0)^2 + \overrightarrow{\Delta x}^2$	$d^2(x,z) = 0$	One-dimensional curve	
	$d^2(x,z) < 0$	One point	•
	$d^2(x,z) > 0$	Codimension-two surface	
Subadditive $(C < 0)$ $d^{2}(x_{1}, x_{2}) = -(\Delta x^{0})^{2} + \overrightarrow{\Delta x}^{2} \left[1 - \epsilon \overrightarrow{\Delta x}^{2} \right]$	$d^2(x,z) = 0$	No solution	
	$d^2(x,z) < 0$	No solution	
	$d^2(x,z) > 0$	Codimension-two surface	
Superadditive $(C > 0)$ $d^{2}(x_{1}, x_{2}) = -(\Delta x^{0})^{2} + \overrightarrow{\Delta x}^{2} \left[1 + \epsilon \overrightarrow{\Delta x}^{2} \right]$	$d^2(x,z) = 0$	Codimension-two surface	
	$d^2(x,z) < 0$	Codimension-two surface	

Solutions to the TPP: ${\bf Lorentzian\ signature}$

Character	First two points	Solutions	Sketch
	$d^2(x,z) > 0$	Codimension-two surface	
Additive $(C=0)$ e.g. $d^2(x_1,x_2) = -(\Delta x^0)^2 + \overrightarrow{\Delta x}^2$	$d^2(x,z) = 0$	One-dimensional curve	
	$d^2(x,z) < 0$	One point	•
	$d^2(x,z) > 0$	Codimension-two surface	
Subadditive $(C < 0)$ $d^2(x_1, x_2) = -(\Delta x^0)^2 + \overrightarrow{\Delta x}^2 \left[1 - \epsilon \overrightarrow{\Delta x}^2 \right]$	$d^2(x,z) = 0$	No solution	
	$d^2(x,z) < 0$	No solution	
	$d^2(x,z) > 0$	Codimension-two surface	
Superadditive $(C > 0)$ $d^{2}(x_{1}, x_{2}) = -(\Delta x^{0})^{2} + \overrightarrow{\Delta x}^{2} \left[1 + \epsilon \overrightarrow{\Delta x}^{2} \right]$	$d^2(x,z) = 0$	Codimension-two surface	
	$d^2(x,z) < 0$	Codimension-two surface	

Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

Geodesic distance can be expressed in a coordinate expansion

$$\langle d^2(0,x)\rangle = \langle g_{\mu\nu}\rangle x^{\mu}x^{\nu} + \frac{1}{2}\langle g_{\mu\nu}\rangle x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\langle g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma}\rangle - 2\langle g_{\mu\nu,\rho\sigma}\rangle x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^5)$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

The unitary gauge coordinates *x* drop from averages

Geodesic distance can be expressed in a coordinate expansion

$$\langle d^2(0,x)\rangle = \langle g_{\mu\nu}\rangle x^{\mu}x^{\nu} + \frac{1}{2}\langle g_{\mu\nu,\rho}\rangle x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma}\right) - 2\langle g_{\mu\nu,\rho\sigma}\rangle x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^5)$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

The unitary gauge coordinates *x* drop from averages

Terms higher than linear cannot be reproduced by an average metric

$$C(0,x) = \frac{1}{4} \left(\bar{g}^{\alpha\beta} \langle \Gamma_{\alpha\mu\nu} \rangle \langle \Gamma_{\beta\rho\sigma} \rangle - \langle g_{\alpha\beta} \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\rho\sigma} \rangle \right) x^{\mu} x^{\nu} x^{\rho} x^{\sigma} + \mathcal{O}(x^5)$$

Result in Euclidean signature:

Average distances always subadditive

Lorentz signature (unitary gauge)

$$C = \frac{1}{4} \left[\frac{1}{4} \left(\langle \dot{\gamma}_{ij} \dot{\gamma}_{lk} \rangle - \langle \dot{\gamma}_{ij} \rangle \langle \dot{\gamma}_{lk} \rangle \right) x^{i} x^{j} x^{k} x^{l} \right.$$

$$- \left(\langle \gamma^{pq} \dot{\gamma}_{pi} \dot{\gamma}_{qj} \rangle - \bar{\gamma}^{pq} \langle \dot{\gamma}_{pi} \rangle \langle \dot{\gamma}_{qj} \rangle \right) t^{2} x^{i} x^{j}$$

$$- 2 \left(\langle \Gamma^{p}_{ij} \dot{\gamma}_{pk} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \dot{\gamma}_{qk} \rangle \right) t x^{i} x^{j} x^{k}$$

$$- \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l} \right],$$

— No non-additivity along time ($\overrightarrow{x} = 0$).

Lorentz signature (unitary gauge)

$$C = \frac{1}{4} \left[\frac{1}{4} \left(\langle \dot{\gamma}_{ij} \dot{\gamma}_{lk} \rangle - \langle \dot{\gamma}_{ij} \rangle \langle \dot{\gamma}_{lk} \rangle \right) x^{i} x^{j} x^{k} x^{l} \right]$$

$$- \left(\langle \gamma^{pq} \dot{\gamma}_{pi} \dot{\gamma}_{qj} \rangle - \bar{\gamma}^{pq} \langle \dot{\gamma}_{pi} \rangle \langle \dot{\gamma}_{qj} \rangle \right) t^{2} x^{i} x^{j}$$

$$- 2 \left(\langle \Gamma^{p}_{ij} \dot{\gamma}_{pk} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \dot{\gamma}_{qk} \rangle \right) t x^{i} x^{j} x^{k}$$

$$- \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

$$- \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

$$+ \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

- No non-additivity along time ($\overrightarrow{x} = 0$).
- Negative definite pieces

Lorentz signature (unitary gauge)

$$C = \frac{1}{4} \left[\frac{1}{4} \left(\langle \dot{\gamma}_{ij} \dot{\gamma}_{lk} \rangle - \langle \dot{\gamma}_{ij} \rangle \langle \dot{\gamma}_{lk} \rangle \right) x^{i} x^{j} x^{k} x^{l} \right]$$

$$- \left(\langle \gamma^{pq} \dot{\gamma}_{pi} \dot{\gamma}_{qj} \rangle - \bar{\gamma}^{pq} \langle \dot{\gamma}_{pi} \rangle \langle \dot{\gamma}_{qj} \rangle \right) t^{2} x^{i} x^{j}$$

$$- 2 \left(\langle \Gamma^{p}_{ij} \dot{\gamma}_{pk} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \dot{\gamma}_{qk} \rangle \right) t x^{i} x^{j} x^{k}$$

$$- \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

$$- \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

$$+ \left(\langle \gamma^{pq} \Gamma_{pij} \Gamma_{qkl} \rangle - \bar{\gamma}^{pq} \langle \Gamma_{pij} \rangle \langle \Gamma_{qkl} \rangle \right) x^{i} x^{j} x^{k} x^{l}$$

- No non-additivity along time ($\overrightarrow{x} = 0$).
- Negative definite pieces
- Positive definite

Examples:

— Superposition of plane waves: C < 0

— Fluctuations around homogeneous background: C < 0

 $C(0,x) \simeq \frac{T^4}{M_P^2} \Delta x^4$ effect important at $\ell \sim \frac{M_P}{T^2}$ Thermal state of gravitons:

- FRW: C < 0 if $w > -\frac{1}{3}$

Causality

Given $\langle d^2(x,y) \rangle$ one can define a metric tensor $\langle g_{\mu\nu} \rangle = \bar{g}_{\mu\nu}$.

$$\bar{g}_{\mu\nu}(x) \equiv -\frac{1}{2} \lim_{y \to x} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}} \langle d^2(x,y) \rangle$$

But there is more to $\langle d^2(x,y) \rangle$ than $\langle g_{\mu\nu} \rangle$!

 $\langle g_{\mu\nu}\rangle\Delta x^{\mu}\Delta x^{\nu}=0$: where we expect the photon to be detected in the immediate vicinity of the emission.

Further away: see where $\langle d^2(x,y) \rangle = 0$

Subadditive causality (C < 0)

Subadditive causality (C < 0)

Two causal structures at play. One *rigid* defined at each point. One dependent on the two extremes x and y.

Photons are "prompt" wrt the rigid structure given by $\bar{g}_{\mu\nu}$

Subadditive causality (C < 0)

to receive it

Two causal structures at play. One *rigid* defined at each point. One dependent on the two extremes x and y.

Photons are "prompt" wrt the rigid structure given by $\bar{g}_{\mu\nu}$

Superadditive causality (C > 0)

$$x \prec y \land y \prec z$$

$$\langle [\mathcal{A}(x), \mathcal{A}(y)] \rangle \neq 0, \quad \langle [\mathcal{A}(y), \mathcal{A}(z)] \rangle \neq 0, \quad \langle [\mathcal{A}(x), \mathcal{A}(z)] \rangle \approx 0$$

Conjecture: Subadditivity the outcome of evolution from relatively "standard" initial conditions

Conclusions:

- The metric is not enough!
- Effect generically small in perturbative situations
- A lot of potential applications
- New mathematical structures...?

One might expect occasional violations of causality (because of the fluctuations of geometry) on top of an otherwise-classical causal structure.

We find instead that the very average d(x, y) is anomalous and *is not* the geodesic distance of any metric.

The reason is that $\bar{d}(x, y)$ is non additive

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

The coordinates x are "physical" i.e. independently defined

$$\langle d^2(0,x)\rangle = \langle g_{\mu\nu}(0)\rangle x^{\mu}x^{\nu} + \dots$$

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma} - 2g_{\mu\nu,\rho\sigma}\right)x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

We want to evaluate

$$\bar{d}(x,y) \equiv \sqrt{\langle d^2(x,y) \rangle}$$

The coordinates x are "physical" i.e. independently defined

$$\langle d^2(0,x)\rangle = \langle g_{\mu\nu}(0)\rangle x^{\mu}x^{\nu} + \dots$$

$$\bar{g}_{\mu\nu}(x) \equiv -\frac{1}{2} \lim_{y \to x} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}} \bar{d}^{2}(x,y)$$

The metric tensor defined locally with d(x, y) is nothing else than $\langle g \rangle$!

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma}\right) - 2g_{\mu\nu,\rho\sigma}x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

Terms higher than linear cannot be reproduced by an average metric

$$C(0,x) = \frac{1}{4} \left(\bar{g}^{\alpha\beta} \langle \Gamma_{\alpha\mu\nu} \rangle \langle \Gamma_{\beta\rho\sigma} \rangle - \langle g_{\alpha\beta} \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\rho\sigma} \rangle \right) x^{\mu} x^{\nu} x^{\rho} x^{\sigma} + \mathcal{O}(x^5)$$

Non-additivity builds up at large separation. Can we infer about the sign?

Geodesic distance can be expressed in a coordinate expansion

$$d^{2}(0,x) = g_{\mu\nu}x^{\mu}x^{\nu} + \frac{1}{2}g_{\mu\nu,\rho}x^{\mu}x^{\nu}x^{\rho} - \frac{1}{12}\left(g_{\alpha\beta}\Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\rho\sigma}\right) - 2g_{\mu\nu,\rho\sigma}x^{\mu}x^{\nu}x^{\rho}x^{\sigma} + \mathcal{O}(x^{5})$$

Terms higher than linear cannot be reproduced by an average metric

$$C(0,x) = \frac{1}{4} \left(\bar{g}^{\alpha\beta} \langle \Gamma_{\alpha\mu\nu} \rangle \langle \Gamma_{\beta\rho\sigma} \rangle - \langle g_{\alpha\beta} \Gamma^{\alpha}_{\mu\nu} \Gamma^{\beta}_{\rho\sigma} \rangle \right) x^{\mu} x^{\nu} x^{\rho} x^{\sigma} + \mathcal{O}(x^5)$$

Non-additivity builds up at large separation. Can we infer about the sign?

$$C(0,x) = -\frac{1}{4} \langle Q_a \eta^{ab} Q_b \rangle ,$$

$$Q_a = \left(e_a^{\alpha} \Gamma_{\alpha\mu\nu} - e_{\beta a} \, \bar{g}^{\alpha\beta} \langle \Gamma_{\alpha\mu\nu} \rangle \right) x^{\mu} x^{\nu} ,$$

The Third-Point-Problem: differential version

$$d(y,z) = R$$

$$d(x,y) = d(y,z) + \frac{\partial d(x,z)}{\partial z^i} n^i R$$

The Third-Point-Problem: differential version

The size of the gradient of d(x, z) in z determines how many solutions to the TPP: the character of d(x, z)