

Ministere dell'Università e della Picerca

Water diffusion in KM3Net equipment

Claudio Santonastaso

claudio.santonastaso@unicampania.it

Workshop PACK – BARI 2022

- Develop new methodologies to predict penetration of water in Km3NET equipments and test new materials. (Ion Beam Analysis [IBA])
- Quality Check during production phase (Isotope Ratio Mass Spectrometry [IRMS])

Goals

- Develop new methodologies to predict penetration of water in Km3NET equipments and test new materials. (Ion Beam Analysis [IBA])
- Quality Check during production phase (Isotope Ratio Mass Spectrometry [IRMS])

Ion beam analysis

Beam production

SS A MCP

WF2

Tandem Accelerator Laboratory

IBA analysis

H₂O in:

- Low Density PolyEthylene (LDPE)
- Glass
- Other plastics

IBA analysis

H₂O in:

- Low Density PolyEthylene (LDPE)
- Glass
- Other plastics

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left(\frac{1}{2} ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{l^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right) \propto \frac{mz^2}{E}$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4\pi\epsilon_o} \frac{1}{4E} \right)^2 \frac{1}{\sin^4(\theta/2)}$$

Beam choice

- Availability (obvious)

- Low Z beams (1H, 3He, 4He) for high penetration [RBS]

 Depending on nuclear reactions possible, eventual background and available cross sections in literature [NRA]

IBA analysis

 H_2O in:

RBS:

-

Glass

Other plastics

⁽¹⁾ Not suitable for plastics

Protons \rightarrow ¹⁶O

Sample production

Sample production

Sample production

VEOC measurement with Ge Detector

Figure 1. Hydrogen yield from **15N(p,a)** used for normalization pourpose.

Figure 1. Hydrogen yield from **15N(p,a)** used for normalization pourpose.

Figure 1. Hydrogen yield from 15N(p,a) used for normalization pourpose.

 $Y(E) = \int_{E_{lab}-\Delta E_{lab}}^{E_{lab}} \frac{\sigma(E_{lab})}{-\frac{1}{N_d \cdot \rho(x(E))} \frac{dE_{lab}}{dx}(E)} dE$

Figure 2. Normalized data and simulated yield curve obtained considering the profile of D2O showed in the figure 3.

Figure 3. D2O Simulated penetration profile in the LDPE sample.

RBS measurements

RBS measurements

IBA conclusions and outlooks

✓ Preliminary results show time to reach the VEOC inner wall >> 20 years

- Investigate on outgassing rate when under vacuum
- Investigate dependence on exposure time, pressure and temperature

IBA conclusions and outlooks

✓ Preliminary results show time to reach the VEOC inner wall >> 20 years

- Investigate on outgassing rate when under vacuum
- Investigate dependence on exposure time, pressure and temperature

IBA conclusions and outlooks

- Damaging due to beam energy loss
- Background reduction
- ³He(d,p)⁴He cross section is a factor 10 higher than
 ¹⁵N(d,p)¹⁶N
- era Calda coil parator NA Sala Acceleratore Zona 2 Gas Targe Zona 1 Zona 3 Sala Controllo

- Develop new methodologies to predict penetration of water in Km3NET equipments and test new materials. (Ion Beam Analysis [IBA])
- Quality Check during production phase (Isotope Ratio Mass Spectrometry [IRMS])

Infiltration rate by delta ¹⁸O measurements

$$\begin{split} H_2 0 + CO_2 &\leftrightarrows H_2 CO_3 \\ \text{Isotopic Exchange Reaction} \\ H_2^{16} 0 + C^{18}O_2 &\leftrightarrows H_2^{18} 0 + C^{18}O_2 \end{split}$$

Infiltration rate by delta ¹⁸O measurements

Sensitivity is enough but

- Need for specific DOM preparation
- Expensive spiked C¹⁸O₂

Dissolved Inorganic Carbon

What we measure: ⁴⁵R $CO_2(g) + H_2O \rightleftharpoons CO_2(aq) + H_2O$ $CO_2(aq) + H_2O \rightleftharpoons H_2CO_3$ $H_2CO_3 \rightleftharpoons H^+ + HCO_3^ HCO_3^- \rightleftharpoons H^+ + CO_3^{-2}$ $CO_3^{-2} + Ba^{+2} \rightleftharpoons BaCO_3$ Spiked with ¹³C

Produced a solution of MILLIQ WATER 50 mL with 56 mg of Ba¹³CO₃ ¹³C 99%.

18

$$\frac{\delta_X(t) - \delta_X^{eq}}{\delta_X^i - \delta_X^{eq}} = e^{-kt}$$

$$\frac{\delta_X(t) - \delta_X^{eq}}{\delta_X^i - \delta_X^{eq}} = e^{-kt}$$

Single Sample Acquisition with 10 Replicates

19

$$\frac{\delta_X(t) - \delta_X^{eq}}{\delta_X^i - \delta_X^{eq}} = e^{-kt}$$

Single Sample Ac

Is it feasible with MIDEL 7131 Oil too?

	δ^{13} C (per mil)	unc (per mil)
Oil (15 mL)	29.3	0.6
Air	17.01	0.09
Water Spiked	2562	6
Oil (15 mL) + 10 microL water spiked	43.1	0.4

IRMS conclusions and outlooks

- ✓ The sensitivity achieved in normal laboratory operating conditions is able to go as far as detecting the infiltration of water inside a DOM that had remained under operating conditions (i.e., Relative humidity < 50%) for a period equal to 10 years submerged under the sea with an experimental time of 1 to 7 days.</p>
- Chamber to work on actual DOM will be completed soon
- To obtain sensitivity to detect operating conditions for 20 years we will work in clean room for sapling to prevent influence by atmospheric carbonatic dust (PM10)

Thanks for the attention