

Progetto CIR01_00021 PACK dal titolo "Potenziamento Appulo-Campano di KM3NeT Rafforzamento del capitale umano dell'infrastruttura di ricerca denominata KM3NeT

(Cubic Kilometre Neutrino Telescope)".

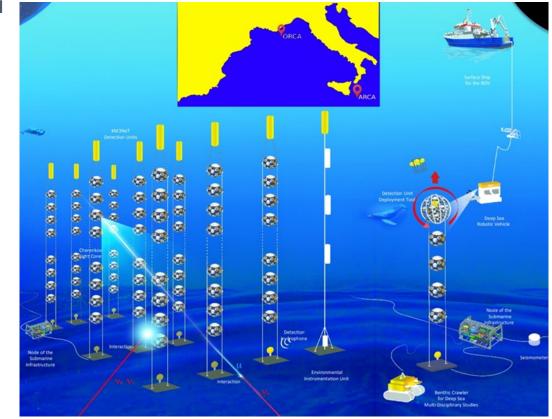
Assegno di ricerca nell'ambito della ricerca tecnologica:

"Progettazioni meccaniche e studio di materiali nell'ambito del PIR001_00021 (PACK)".

Coordinatore scientifico di progetto:

Dott. Marco Circella, INFN Bari

Assegnista: Nicola Battista


Obiettivo principale del progetto PACK(PIR01/CIR01_00021):

Operazione finalizzata al potenziamento dell'infrastruttura di ricerca KM3NeT mediante l'estensione del telescopio sottomarino ed il potenziamento delle installazioni presso le Sezioni INFN di Bari e Napoli ed il Laboratorio CIRCE dell'Università della Campania "Luigi Vanvitelli"

L'obiettivo scientifico del telescopio ARCA, ubicato nelle profondità del Mar Mediterraneo al largo di Capo Passero in Sicilia, è quello di consentire l'osservazione dei neutrini ad alta energia.

Il progetto prevede 4 obiettivi realizzativi:

- 1.Laboratorio di prototipazione, integrazione e accettazione di strumentazione sottomarina (INFN-Bari)
- 2.Laboratorio isotopico per la caratterizzazione microscopica di materiali e componenti (UniCampania)
- 3.Laboratorio di costruzione e test di strumentazione opto-acustica sottomarina complessa (INFN-Napoli)
- 4. Potenziamento dell'infrastruttura sottomarina per la neutrinoastronomia e ricerche multidisciplinari (INFN-Napoli)

KM3NeT

La mia attività di ricerca tecnologica

Titolo assegno: "Progettazioni meccaniche e studio di materiali nell'ambito del PIR001_00021 (PACK)"

Inizio: 01 aprile 2022

Fine: 31 marzo 2025.

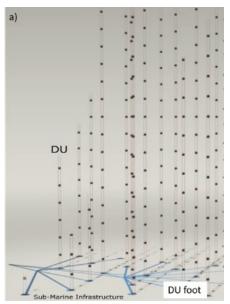
Obiettivo: supportare le diverse fasi dell'attività scientifica mettendo in campo conoscenze e

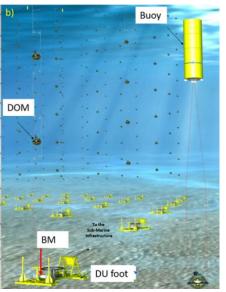
metodologie caratterizzanti l'ingegneria meccanica.

In questi primi 7 mesi le mie attività si sono collocate nell'ambito del gruppo di ricerca INFN-Bari con riferimento a:

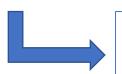
- disegno
- prototipazione
- qualifica
- integrazione e coordinazione del nuovo Modulo di Base (BM) in configurazione WWRS.

In particolare:


- 1. Partecipazione a: test in pressione sul primo contenitore in titanio del BM realizzato
 - test termici in acqua del primo prototipo del BM
- 2. Controllo metrologico e analisi dei report e di non conformità dei contenitori in titanio attualmente in produzione
- 3. Preparazione di alcuni documenti meccanici necessari all'integrazione del BM
- 4. Aggiornamento e nuovo disegno dei tools per l'integrazione dei BM

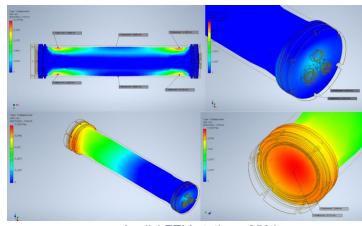


Vista artistica di ARCA KM3NeT


Progettazione meccanica del BM

Principali criticità nella progettazione del contenitore del BM:

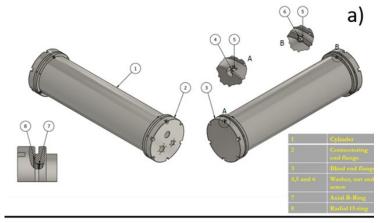
- 1. Pressione esterna di **350 bar** (profondità di 3500 m)
- 2. Ambiente marino corrosivo
- 3. Nessuna possibilità di intervento in sito dopo il deployment
- 4. Affidabilità di buon funzionamento per 20 anni
- 5. Opportuno interfacciamento con la linea di rivelazione e l'infrastruttura sottomarina

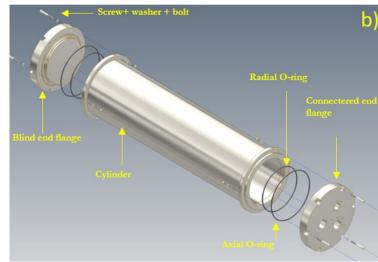

Tra i requisiti di progettazione:

- 1. Alloggiamento del frame interno
- 2. Resistenza alla pressione e all'ambiente marino:
 - a) con deformazioni contenute (spessori opportuni cilindro/flange)

- Coeff. Sicurezza = 6
- Max deformazione radiale ≈ 0,2mm
- Max deformazione longitudinale ≈ 0,9mm
- Nessuna trasmissione di tensioni sui componenti interni

<u>Analisi FEM statica a</u> 350 bar (teoria di Von Mises per materiali duttili)

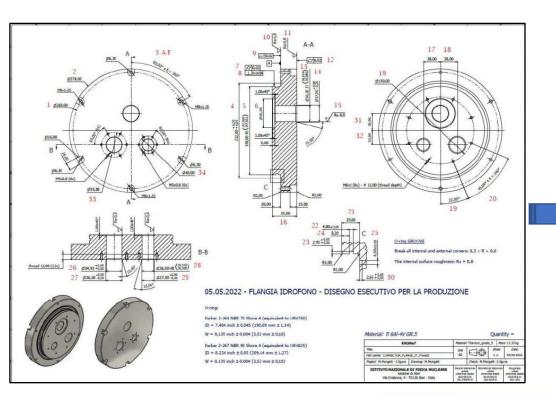




Progettazione meccanica del BM

- 2. Resistenza alla pressione e all'ambiente marino:
 - b) tenuta stagna: analisi interfaccia accoppiamento, definizione delle tolleranze opportune, impiego di anelli di tenuta con ridondanza (2 per ogni flangia)
 - c) affidabilità per 20 anni: materiale scelto titanio Ti6Al-4V (grado V)

Trade name	1 6Al-4V				
Standards	Material No.	EN Designa	etion	ASTM	UNS
	3.7164/65	Titan Grade 5 (6Al-4V) Ti-G		e 5 (6 Al 4V)	R56400
Chemical Composition	C	V	N	Tì	Al
	% ≤ 0.08	% 3.50-4.50	% ≤ 0.05	≤ % Rest	% 5.50-6.75
	Fe %	0 %	H %		
	≤ 0.40	≤ 0.20	≤ 0.015		
Mechanical Properties 20°C	Hardness HB 30 ≤ HB	0.2% Yield strength R _p ≥ N/mm ²	Tensile strength R _m	Elongation A ₅ ≥ %	Modulus of elasticity kN/mm²
	310	830	≥895	10	114
Physical Properties 20°C	Density g/cm ³	Specific heat capacity J/kg K	Thermal conductivity W/m K	Electrical resistivity Ω mm²/m	
	4.43	560	7.1	1.71	



Accettazione dei contenitori in titanio in produzione

La fase di accettazione dei componenti del BM comprende:

- 1. Verifica dei report inviati con la produzione
- 2. <u>Controllo dimensionale a campione</u> mediante macchina di misura CMM (in foto)
- 3. <u>Analisi dei report di Non Conformità (quando presenti)</u> al fine di accettare anche piccoli valori di fuori tolleranza

	MM	PLAN_0.02(RIF_9) - PIANO-A								
AS	NOMINALE	MIS	TOLL POS	TOLL NEG	DEV	FUORITOL	MAX	MIN		
М	0.000	0.018	0.020	0.000	0.018	0.000	0.009	-0.009		
#	ММ	MIS.Ø198F6(RIF_5) - Ø198F6								
AS	NOMINALE	MIS	TOLL POS	TOLL NEG	DEV	FUORITOL	MAX	MIN		
D	198.000	197.953	-0.050	-0.079	-0.047	0.003	197.964	197.945	<u></u>	
Ø	MM	CILTÀ_0.02(RIF_7) - Ø198F6								
AS	NOMINALE	MIS	TOLL POS	TOLL NEG	DEV	FUORITOL	MAX	MIN		
М	0.000	0.009	0.020	0.000	0.009	0.000	0.005	-0.004		

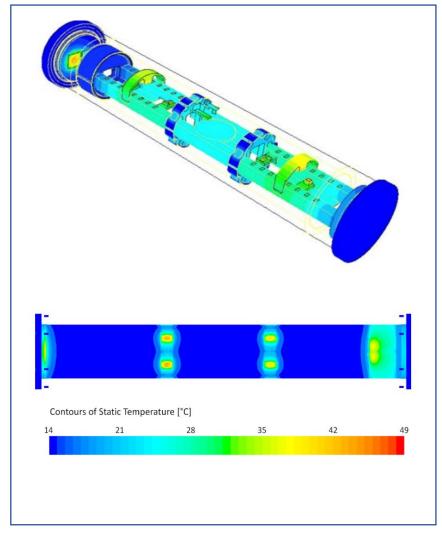
Verifica interfacce: l'accettazione avviene solo se è garantito il rispetto degli accoppiamenti secondo le tolleranze di progetto

Qualifica meccanica del BM: test in pressione

- 1. Il contenitore è stato assemblato nel Laboratorio di Bari.
- 2. Il test in pressione è stato condotto in camera iperbarica, presso il laboratorio MacArtney in Francia, in accordo con la procedura NF X10-812:
 - 8h a 525bar
 - 10 cicli di 1h a 350bar

L'obiettivo è stato verificare che non ci fosse assolutamente ingresso di acqua all'interno del BM attraverso le interfacce con l'esterno (le 2 flange e i fori dei connettori)

Il test ha permesso di validare la progettazione del BM da un punto di vista meccanico.


Progettazione meccanica del BM

Principali criticità nella progettazione del frame interno:

- 1. Sollecitazione dei componenti elettro-ottici durante l'integrazione, la movimentazione e il deployment del BM
- 2.Contenimento della temperatura dei componenti elettro-ottici in accordo con gli studi di affidabilità degli stessi per 20 anni

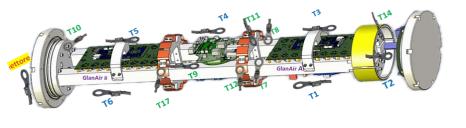
Tra i requisiti di progettazione:

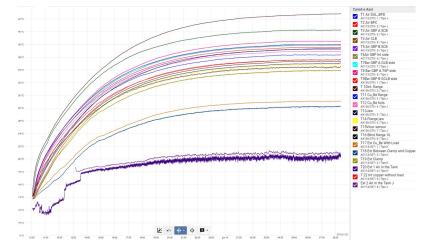
- 1. Opportuno alloggiamento e fissaggio dei componenti sul frame
- 2. Fissaggio del frame al contenitore in titanio
- 3. Capacità di dissipazione termica per un valore complessivo sui **100W**, nel rispetto della criticità al punto 2, mediante processo di conduzione termica. Superfici di scambio tra: a) componenti e frame; b)frame e contenitore; c) contenitore e ambiente marino a 14°C

Analisi di simulazione CFD in acqua a T=14°C

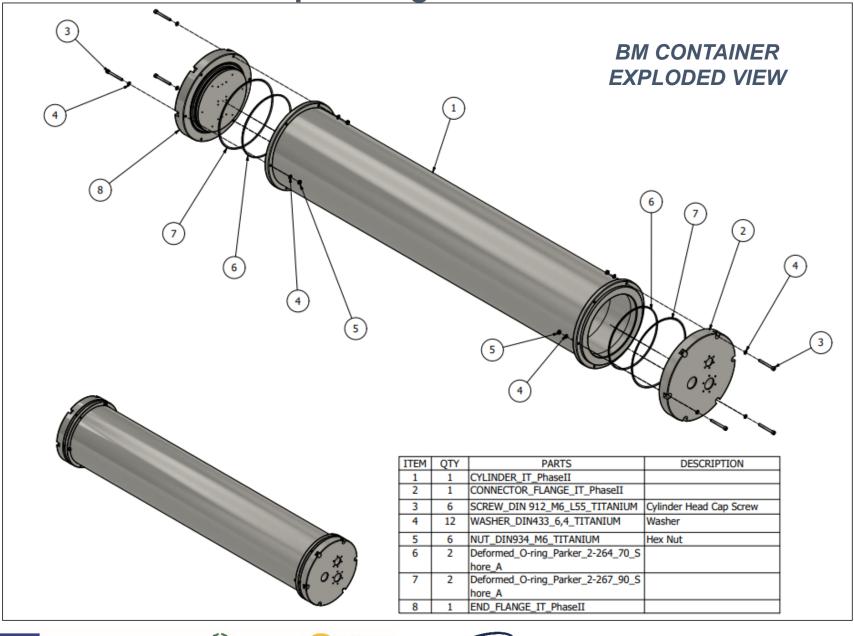


Qualifica meccanica del BM: test termici in acqua


I test termici sono stati condotti presso il laboratorio di Bari. Il BM, come in configurazione di lavoro, è stato immerso in una vasca di acqua a T_{water} = 14 [°C].


Sono stati posti sensori di temperatura in diversi punti del sistema (esterni al cilindro, interni e a contatto con il frame, interni non a contatto, nella vasca.

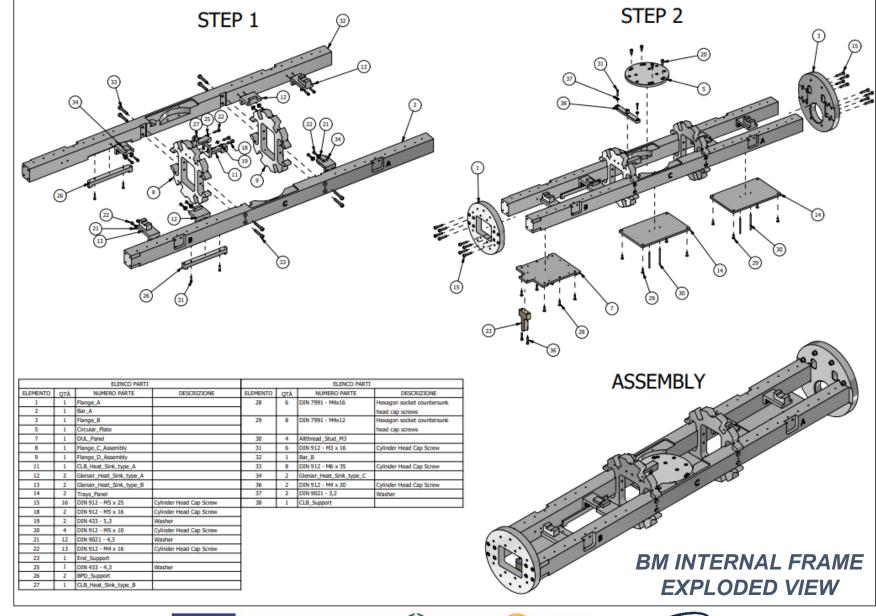
L'analisi dei dati ha consentito di validare la progettazione del BM da un punto di vista termico.



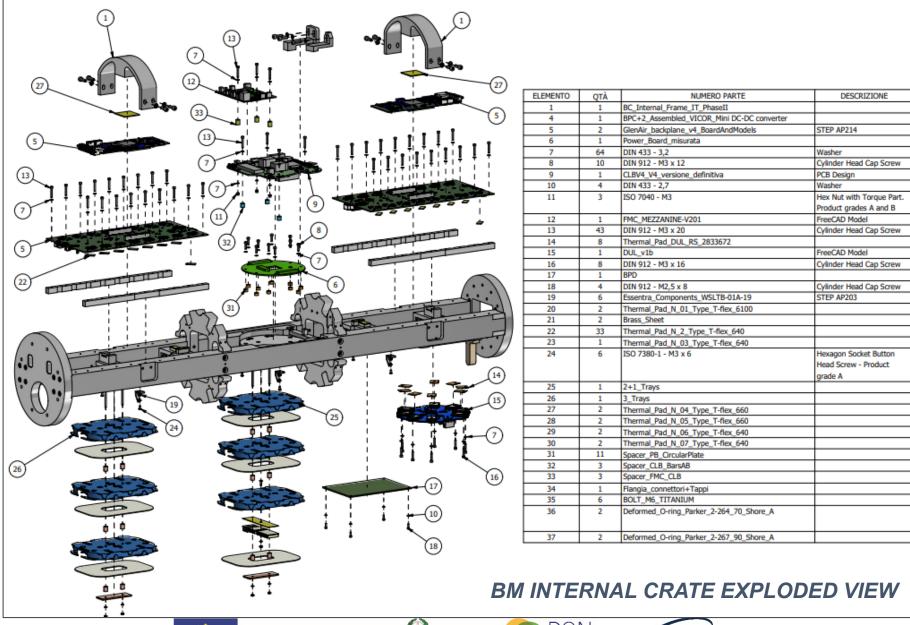
Documenti meccanici per integrazione

I disegni esplosi rappresentano dei documenti tecnici necessari per le fasi di integrazione dei BM:

- Facilità di lettura e supporto nell'assemblaggio dei componenti nelle diverse fasi di integrazione
- Generazione della distinta componenti (BOM) fondamentale per la fase di acquisto dei materiali



Documenti meccanici per integrazione



Documenti meccanici per integrazione

Integrazione dei moduli di base

1. Workshop per training integrazione dei nuovi moduli di base presso il Laboratorio di integrazione a Bari (dal 08/11/22 al 11/11/22)

2. Collaborazione per l'apertura e l'attrezzaggio del sito di integrazione delle DU presso il Politecnico di Bari

Grazie per l'attenzione!

