Measuring tau g-2 using ATLAS Pb+Pb collisions

New Frontiers in Lepton Flavor 2023

Weronika Stanek-Maslouska for the ATLAS Collaboration Pisa, 15 May 2023

Deutsches Elektronen-Synchrotron DESY

Introduction to a_{τ}

Charged particles with spin have an intrinsic magnetic moment:

$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$
 for spin $\frac{1}{2}$ particles, (1)

where:

- \cdot \vec{s} spin angular momentum,
- $g = 2 + \frac{\alpha}{\pi} + \dots$

Anomalous magnetic moment:

Lepton magnetic moments

• a_e , a_μ are precisely measured observables in Nature:

Electron g-2: 10^{-8} precision, -2.5σ , $+1.6\sigma$ discrepancy **Muon g-2:** 10^{-7} precision, up to $\sim 4.2\sigma$ discrepancy

Phys. Rev. Lett. 97 (2006) 030801, Phys. Rev. Lett. 126 (2021) 141801

• a_{τ} is much less constrained:

Tau g-2: $0.052 < a_{\tau} < 0.013$ (95% CL)

DELPHI, EPJC 35 (2004) 159

- Tau is extremely hard to measure (lifetime 10^{-13} s)
- $\cdot a_{ au}$ is more sensitive to some BSM effects

Proposal: Measure a_{τ} in Pb+Pb collisions

• Ultraperipheral heavy-ion collisions (UPC):

- UPC occurs when the impact parameter is larger than twice the radius of the ions (b > 2R)
- · Photon-photon interactions can be observed.
- Advantages of UPC Pb+Pb over pp collisions
 - + huge photon fluxes $\rightarrow Z^4$ cross-section enhancement
 - $\cdot\ \sim$ no hadronic pile-up \rightarrow exclusivity selections
 - low p_T thresholds in trigger and offline reconstruction

Detailed theoretical framework: PRD 102 (2020) 113008, PLB 809 (2020) 135682

Tau decays

CERN-EP-2022-079

- Measurement uses 1.44 nb⁻¹ of 2018 UPC data, $\sqrt{s_{\rm NN}} = 5.02$ TeV

Signal candidates are selected using muonic τ decays and categorised using electrons or low- p_T tracks:

- μ 1T-SR muon + 1 track
- μ 3T-SR muon + 3 tracks
- μe -SR muon + electron

see Lydia Beresford's talk see also CMS result

- + Exploit $\gamma\gamma \rightarrow \tau\tau$ cross-section to set limits on a_{τ}
- Reduce uncertainties using $\gamma\gamma \rightarrow \mu\mu$ control region (2 μ CR)
- + Fit muon p_{T} in signal regions + di-muon control region to extract a_{τ}

Experimental challenges:

- hadronic backgrounds
- \cdot neutrinos in the final state

PLB 809 (2020) 135682

au leptons never directly targeted in measurements using nucleus-nucleus data

 $\begin{array}{l} \mbox{Di-muon}\\ \mbox{Estimated with MC:}\\ \gamma\gamma \rightarrow \mu\mu : \mbox{Starlight+Pythia8}\\ \gamma\gamma \rightarrow \mu\mu\gamma : \mbox{Madgraph5} \end{array}$

Photonuclear

Data-driven estimation: Built CR requiring an additional low- p_T track

see Jakub Kremer's talk

Extract signal strength and a_{τ} using profile likelihood fit:

- Build templates for different a_{τ} values: $a_{\tau} =$
 - $[0,\pm 0.01,\pm 0.02,\pm 0.03,\pm 0.04,\pm 0.05,\pm 0.06,\pm 0.1]$
- Pre-fit distribution of p_T^{μ} in the μ 1T-SR:

CERN-EP-2022-079

Post-fit distributions

- · uncertainties decrease in post-fit distributions
- differences between SM and BSM values of a_{τ} increase with muon p_{T}

Observation of the $\gamma\gamma \rightarrow \tau\tau$ in Pb+Pb: Signal strength

- Result for each signal region compatible with unity
- Combined fit reaches 5% precision
- limited by statistical uncertainties

 $\mu_{ au au} = rac{ ext{observed yield}}{ ext{SM prediction}}$

Observation of the $\gamma\gamma \rightarrow \tau\tau$ in Pb+Pb: a_{τ}

- + Expected 95% CL limits from combined fit: -0.039 < a $_{ au}$ < 0.020
- Observed 95% CL limits: -0.057 < a $_{ au}$ < 0.024
- Result competitive with electron-collider studies

Summary and outlook

Hadron-collider studies may be used to measure electromagnetic τ properties

New constraints on a_{τ} competitive with electron-collider results Results limited by statistical uncertainties: inclusion of 2015 data in progress + future plans for run 3 heavy-ion data

> Thank You Questions?

BACKUP

Systematic uncertainties

Uncertainty	Impact on $\mu_{\tau\tau}$ [%]
muon Level-1 trigger (sys)	1.0
τ decay modeling	1.0
tracking eff. (overall ID material)	0.9
muon Level-1 trigger (stat)	0.7
topocluster reco. eff.	0.6
muon reco. eff. (stat)	0.6
tracking eff. (PP0 material)	0.6
topocluster energy calib.	0.5
muon reco. eff. (sys)	0.5
photonuclear template var. (μ 1T-SR)	0.5
Total systematic	2.6

Event yields

Requirement	Number of $\gamma \gamma \rightarrow \tau \tau$ events		
Common selection			
$\sigma \times \mathcal{L}$	352611		
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}}$	28399	μ 3T-SR	
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}} \times w_{\text{SF}}$	35383	Mpreselected _ 1	1022
Pass trigger	1840	$V_{\mu} = 1$	1025
$E_{\rm ZDC}^{A,C} < 1 \text{ TeV}$	1114	$N_{\mu}^{\mu} = 1$	900
		$N_e = 0$	867
µ11-5K		$N_{\rm trk}$ (with $\Delta R_{\mu,\rm trk} > 0.1$) = 3	88.1
$N_{\rm reselected}^{\rm preselected} = 1$	1023	Zero unmatched clusters	85.2
$M^{\text{signal}} = 1$	900	\sum charge = 0	84.1
$N_{\mu} = 1$	900	$m_{\rm trks} < 1.7 { m ~GeV}$	83.4
$N_e = 0$	807	$A^{\mu, \text{trks}} < 0.2$	83.3
$N_{\rm trk}$ (with $\Delta R_{\mu,\rm trk} > 0.1$) = 1	575	$\pi_{\phi} = 0.2$	00.0
Zero unmatched clusters	552	μe -SR	
\sum charge = 0	546	signal	
$p_{-}^{\mu,\text{trk}} > 1 \text{ GeV}$	503	$N_{\mu}^{\text{sterm}} = 1$	958
$\mu_{\rm T}^{\mu,{\rm trk},\gamma} > 1 {\rm GeV}$	492	$N_e = 1$	33.9
$p_{\rm T} > 1 {\rm GeV}$	402	$N_{\rm trk}$ (with $\Delta R_{\mu/e,{\rm trk}} > 0.1$) = 0	32.6
$p_{\rm T}^{\mu,\rm m,cons} > 1 {\rm GeV}$	462	Σ charge = 0	32.5
$A^{\mu,\mathrm{trk}}_{\phi} < 0.4$	459		

- \cdot Re-weight SM signal MC to BSM values of $a_{ au}$
- \cdot 3D weighting in $|m_{ au au}|, |y_{ au au}|, |\Delta\eta_{ au au}|$
- same parametrisation as LEP

Pre-fit distributions

