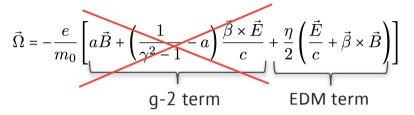


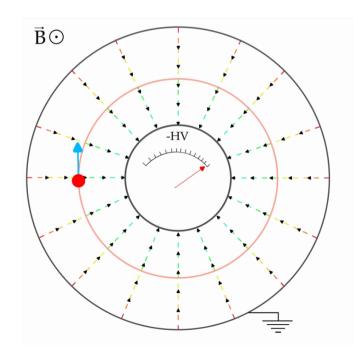
Chavdar Dutsov :: Paul Scherrer Institute

Systematic effects in the search for the muon EDM using the frozen-spin method

On behalf of the muonEDM collaboration 16 May 2023 – Pisa

- Relativistic spin precession of a charged particle (Thomas-BMT equation) →
- By applying an appropriate radial E-field to the muon we negate the *g*-2 term.
- Ideally any observed spin precession would be due to a non-zero EDM.
- Asymmetry between upstream and downstream emitted decay positrons.
- Some asymmetry could still be observed due to systematic effects



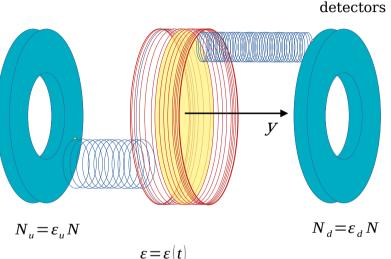


- Effects that lead to a *real* or *apparent* precession of the spin around the radial axis that are not related to the EDM.
- Types of systematic effects:
 - Early to late variation of detection efficiency of the EDM detectors *(apparent)*
 - Coupling of the anomalous magnetic moment with the EM fields of the experimental setup *(real)*
 - Dynamical phase $\vec{\Omega}_{\text{MDM}} = -\frac{e}{m_0} \left[a\vec{B} a\frac{\gamma 1}{\gamma} \frac{(\beta \cdot B)\beta}{\beta^2} + \left(\frac{1}{\gamma^2 1} a\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$
 - Geometric phase

$$\gamma_n[C] = i \oint_C \langle n,t |ig(
abla_R|n,t
angleig) \, dR$$

Early-to-late detection efficiency changes

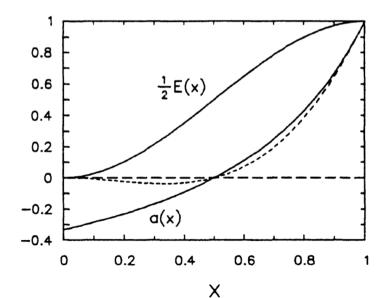
- Strong pulsed magnetic field → eddy currents, noise, heat in detectors and associated electronics.
- Time-dependent changes in the detection efficiency of a set of detectors will be seen as a false EDM signal.
- Significant only for low-energy positrons that would produce a weak signal and could be missed by the detectors.

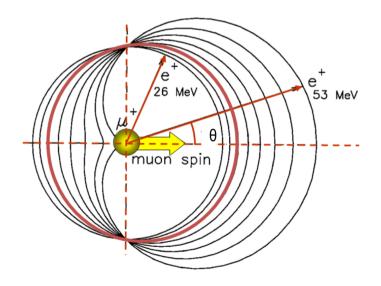


EDM

Kinematics of Michel decay positrons

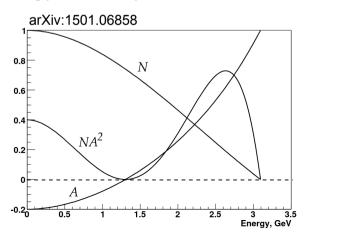
- For high positron energies preferentially emitted in the direction of the muon spin.
- Energy spectrum and **directional** asymmetry as a function of the fractional energy x = E/E_{max}:

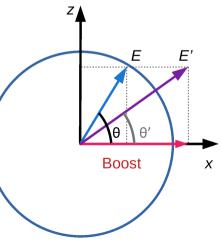




Kinematics – g-2 experiments

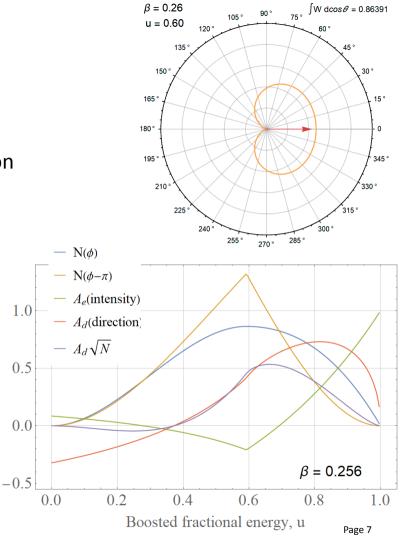
- For high momentum muons the angular distribution is Lorentz boosted along the momentum.
- For large boosts practically all decay positrons are emitted in the forward direction – no directional asymmetry.
- Intensity asymmetry: Dependence of the number of decay positrons at a given enrgy on the spin.





muEDM kinematics

- The first stage 28 MeV/c surface muons.
- Both directional and intensity dependence on the spin direction.
- Precession due to the g-2 can be measured using intensity asymmetry.
- Precession due to EDM can be measured from the direction of emitted positrons:
 - up-down asymmetry.
- Only positrons above 25 MeV contribute significantly to the asymmetry.



1.0

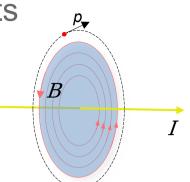
0.5

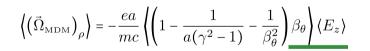
0.0

Real spin precession systematic effects

- Only four sources of spin precession that could lead to EDM-like signal:
- Net azimuthal B-field (zero if no current flows through the area enclosed by the orbit)
- Time variable radial B-field (constraints on the pulse width and decay time of the magnetic kick)
- Net longitudinal E-field
- Geometric phases

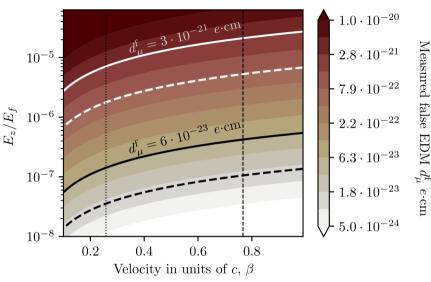
$$\left\langle \left(\vec{\Omega}_{\text{MDM}} \right)_{\theta} \right\rangle = -\frac{e}{m} \langle B_{\theta}(t) \rangle$$

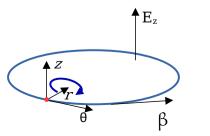




Constraints on the average longitudinal E-field

- Limit on the average E_z field as a function of the muon velocity shown as a fraction of the radial component:
- Effect cancels if particles are injected alternatively CW and CCW and subtracting counts in the detectors.
- CW and CCW orbit directions are done by switching the B-field direction.

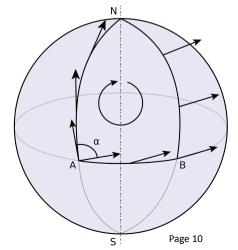




$$\left\langle \left(\vec{\Omega}_{\mathrm{MDM}} \right)_{\rho} \right\rangle = -\frac{ea}{mc} \left\langle \left(1 - \frac{1}{a(\gamma^2 - 1)} - \frac{1}{\beta_{\theta}^2} \right) \beta_{\theta} \right\rangle \langle E_z \rangle$$

Geometric (Berry's) phase

- The geometric phase is a phase difference acquired over the course of a cycle in parameter space.
- Parallel transport of a vector around a closed loop.
- The angle by which it twists is proportional to the area inside the loop:
 - In classical parallel transport it's equal.
 - In quantum mechanics it's -¹/₂ (fermions).
- If oscillations around two axes are combined we can observe a phase shift (false EDM)
 even if the the time average of each oscillation is zero.



Calculation of geometric phases

• Spin precesses around axis **x** with amplitude C_1 and frequency Ω_x , and around **y** with amplitude C_2 and frequency Ω_y . Phase difference between the two β_0 .

$$x = C_1 \sin(\Omega_x t), \quad y = C_2 \sin(\Omega_y t + \beta_0)$$

• The movement of the spin encloses an area A on some abstract surface. The area can be calculated from Green's theorem:

$$A = \frac{1}{2} \int_{t_0}^{t_1} (xy' - yx') dt$$

• The geometric phase as a function time is then:

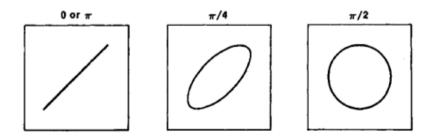
$$\alpha(t;\omega_x,\omega_y,\beta_0) = \frac{1}{2} \frac{\Omega_x \Omega_y}{\omega_x \omega_y} \int \left(\omega_y \cos(\omega_y t + \beta_0) \sin(\omega_x t) - \omega_x \cos(\omega_x t) \sin(\omega_y t + \beta_0) \right) dt = \\ = \frac{1}{4} \frac{\Omega_x \Omega_y}{\omega_x \omega_y} \left[\frac{\omega_x - \omega_y}{\omega_x + \omega_y} \cos((\omega_x + \omega_y)t + \beta_0) - \frac{\omega_x + \omega_y}{\omega_x - \omega_y} \cos((\omega_y - \omega_x)t + \beta_0) \right]_{\text{Page 11}}$$

Calculation of geometric phases

• In the case where the two oscillations have the same frequency the geometric phase is:

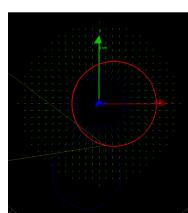
$$\alpha(t;\omega,\beta_0) = \frac{1}{2} \frac{\Omega_x \Omega_y}{\omega^2} \int \left(\omega \cos(\omega t + \beta_0) \sin(\omega t) - \omega \cos(\omega t) \sin(\omega t + \beta_0)\right) dt = -\frac{1}{2\omega} \Omega_x \Omega_y t \sin(\beta_0)$$

- The motion of the spin in this case is an ellipse with eccentricity defined by the phase difference between oscillations
 - no phase difference: ellipse looks like a line no geometric phase
 - $-\pi/2$ phase difference: ellipse is a circle and maximum area

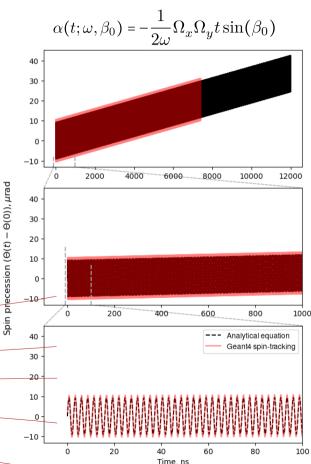


Example of a geometric phase accumulation

- Spin precession due to misalignment of E-field:
 - longitudinal oscillations due to stronger and weaker freeze field (cyclotron frequency)
 - radial oscillations due to longitudinal E-field oscillating between upstream and downstream directions (cyclotron frequency)



Tilted and shifted E-field with respect to the center of the muon orbit



- Major sources of possible systematic effects in the experiemnt are:
- Early-to-late variations in the detection efficiency of the EDM detectors:
 - Only higher energy positrons above 25 MeV contribute to the measured asymmetry.
- Non-zero longitudinal E-field component:
 - Effect cancels if we alternate between CW and CCW injections, determined by the polarity of the main solenoid.
- An analytical description of the geometric phases was developed and tested with G4 simulations:
 - Places constraints on the E-field uniformity and alignment of the injection.

Thank you for the attention!

muonEDM collaboration kick-off meeting May 2022 (Pisa, Italy) \rightarrow

PAUL SCHERRER INSTITUT

INFŃ

Istituto Nazionale di Fisica Nucleare

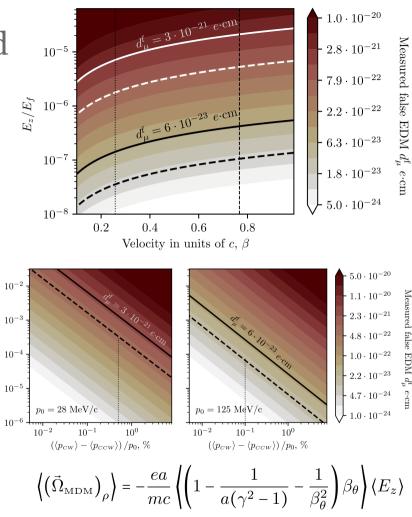
ETH

UNIVERSITÀ DI PISA

Net longitudinal E-field

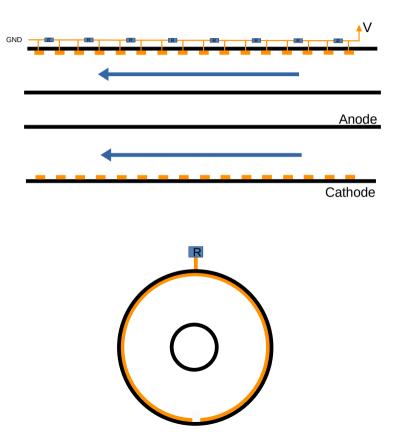
- Very stringent limit on the net longitudinal E-field.
- The effect changes sign with β. (change in the longitudinal B-field direction)
- This places limits on the average muon momentum for CW and CCW injections.
- The cancellation works only if:
 - the muon orbits are in the same place for CW/CCW
 - E-field non-uniformity does not lead to too different average E_z fields for CW/CCW injections.

 E_z/E_f



Artificial longitudinal E-field

- One can generate a longitudinal E-field with controllable intensity.
- Could be used to verify that we can observe EDM-like signal.
- Could be tuned to cancel the intrinsic average E-field of an imperfect electrode, e.g.:
 - tune field until no signal is seen for CW, then measure CCW.
 - would increase real signal to systematic effect ratio.

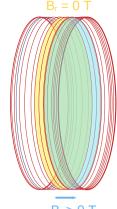


Limits on real spin precession effects

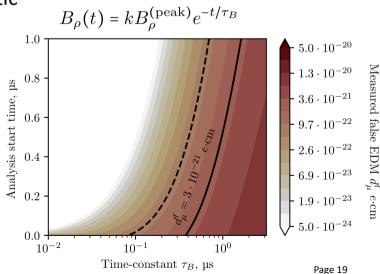
Systematic effect	Constraints	Phase I		Phase II	
		Expected value	Syst. $(\times 10^{-21} e \cdot cm)$	Expected value	Syst. $(\times 10^{-23} e \cdot cm)$
Cone shaped electrodes (longitudinal E-field)	Up-down asymmetry in the electrode shape	$\Delta_R < 30 \ \mu m$	0.75	$\Delta_R < 7 \ \mu m$	1.5
Electrode local smoothness (longitudinal E-field)	Local longitudinal electrode smoothness	$\delta_R < 3~\mu{\rm m}$	0.75	$\delta_R < 0.7~\mu{\rm m}$	1.5
Residual B-field from kick	Decay time of kicker field	< 50 ns	$< 10^{-2}$	$< 50 \mathrm{~ns}$	0.5
Net current flowing muon orbit area	Wiring of electronics inside the orbit	< 10 mA	$< 10^{-2}$	< 10 mA	0.3
Early-to-late detection efficiency change	Shielding and cooling of detectors	_		_	
Resonant geometrical phase accumulation	Misalignment of central axes	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	2×10^{-2}	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	0.15
TOTAL			1.1		2.2

Time-variable radial B-field

- A static radial B-field would create an offset in the position of the equilibrium orbit.
 - Not a problem since we are interested in the change in the phase with time.*
- A time-variable B_r can come from the magnetic kick or eddy currents caused by it.
- Assuming an exponentially decaying residual B-field after the kicker pulse one can determine limits on the decay constant as a fucntion of the analysis start time.
- Radial B-fields of less than 5 μT would not induce a significant spin precession.



 $B_r > 0 T$



* may or may not induce Berry's phases

Sources of E_y field: electrode alignment

• The E field of an infinitely long coaxial cylinders is: $\vec{E}(\vec{r}) = \frac{V}{\log \frac{b}{a}} \begin{pmatrix} x/r^2 \\ y/r^2 \\ 0 \end{pmatrix}$

Shifting the field by r_0 and rotating by α gives:

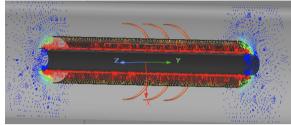
$$\vec{E}' = R_y(\alpha)\vec{E}(R_y^{-1}(\alpha)\vec{r} + \vec{r}_0) = V_0 \begin{pmatrix} \frac{\varsigma}{\rho^2}\cos\alpha\\ \frac{\upsilon}{\rho^2}\\ -\frac{\xi}{\rho^2}\sin\alpha \end{pmatrix}$$

$$V_0 = \frac{V}{\log \frac{b}{a}}, \ \upsilon = y + y_0, \ \xi = x_0 + x \cos \alpha - z \sin \alpha \ \text{and} \ \rho^2 = \xi^2 + \upsilon^2$$

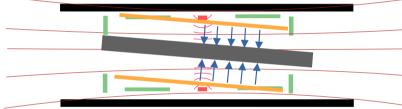
• Then average the new field out over a circular orbit:

$$\langle E'(\rho,\zeta)\rangle = {1\over 2\pi} \int_0^{2\pi} E' d\phi$$

• It can be shown (numerically for now) that: $\langle E'(\rho,\zeta)\rangle = \langle E(\rho,\zeta)\rangle$



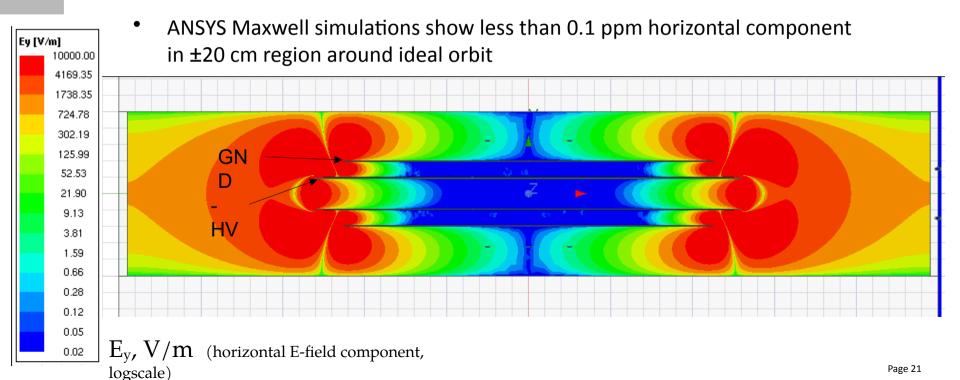
Misalignment of the electric field



- For a circular orbit the misalignment of the anode or cathode cannot introduce a net horizontal E-field (that was not there before)
- It also does not affect the 'frozen spin' condition

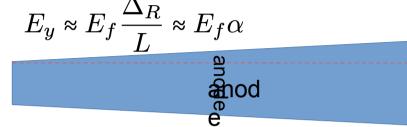
Sources of E_y field: fringe fields

• The assumption for infinite coaxial cylinders holds if there are negligible fringe field in the region of interest

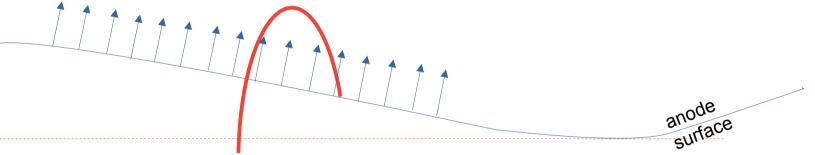


Sources of E_y field: electrode non-uniformity

• Tapered cone shaped electrodes



• Smoothness of the electrodes close to the muon orbit (few centimeters)



- Generally sub-micrometer surface smoothness is possible with common machining and polishing techniques
- Cylindricity in the order of 50 nm is measurable even on large samples

Requirements for electrode uniformity

- The condition to assume ideal uniformity is such that E_y is kept below the 0.5 ppm from E_f target
- If the radius of the anode or cathode is larger on one side than on the other then there will be a field component in the vertical direction
 - ¹ Using a small angle approximation:

$$E_y \approx E_f \frac{\Delta_R}{L} \approx E_f \alpha$$

^I The radius of the anode or cathode should not change with more than Δ_R =150 nm (precursor) and Δ_R =300 nm (final) along its length (L ~ 50 cm)

Requirements for electrode uniformity

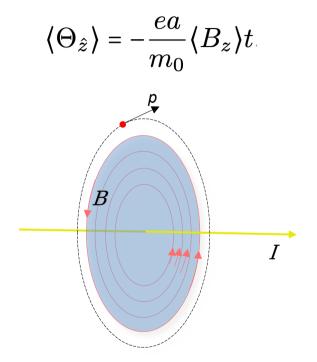
- Another source of a net vertical field would be a small protrusion on the surface of the electrode
- The E-field of a cylinder with radius R and surface charge density σ at a distance *r* is: $E_f(r) = \frac{\sigma R}{\epsilon_0 r}$
- The E-field from a small protrusion with area A at a distance Δ_z from the storage ring can be calculated from Coulomb's law: $E_y(\Delta_z) = \frac{1}{4\pi\varepsilon_0} \frac{\sigma A}{\Delta_z^2}$
- Thus the maximum allowed area for a protrusion is:

 $A = 4\pi \frac{\Delta_z^2}{r} \frac{E_y}{E_f}$

 Assuming a spherical cap like protrusion at 2 cm from the storage ring – maximum allowed height h = 40 µm

Limit on the *B*-field parallel to the momentum

- Non-zero average B_z field if there is electric current flowing through the area enclosed by the muon orbit
- Write net current!
- From Biot-Savart's law we can give a limit on the systematics due to such current
- Assuming non-insulated wire at the center of the orbit:
 - Precursor: I < 250 mA</p>
 - ^I Final experiment: I < 40 mA



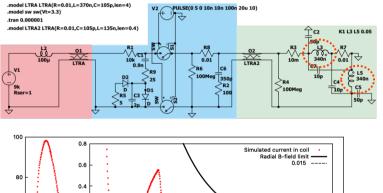
Limit on the radial *B*-field

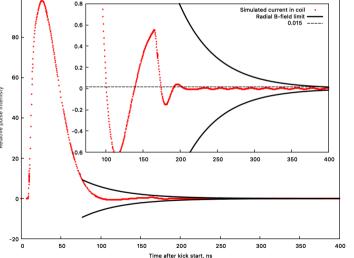
- Limit on the kicker field decay time with relation to the injection angle
- Assumptions:
 - ¹ half-sine kicker field intensity
 - end of the kick is considered to be at the 10% from maximum livel
 - ¹ exponential decay of the ringing signal with time constant τ_B
- Note: the constraint is lower for later times and stronger for earlier times



Limit on the radial *B*-field

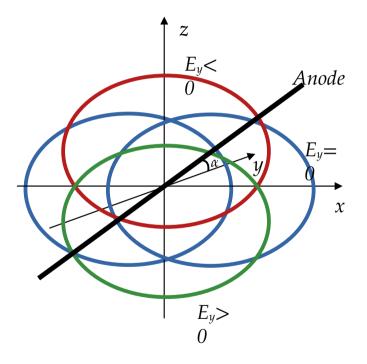
- Simulated short current pulse for the two anti-Helmholtz coils
- The solid black line shows the limiting decay time for an exponentially decaying pulse that goes below the limit at 400 ns (overshoot or undershoot)
- The influence of the simulated kicker field to the observed spin precession is negligible after 200 ns





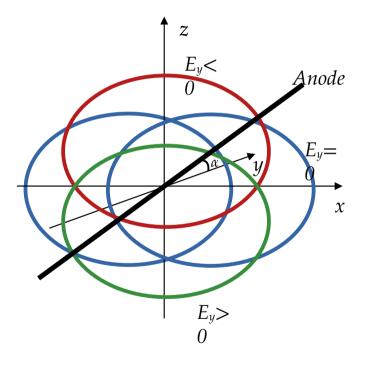
Non-circular muon orbit

- A non-zero average E_y field can be generated if the orbit of the muons is eliptical and at the same time it is not perpendicular to the axis of the anode.
 - the average field will be zero if the center of the orbit lies on the *x* axis
 - it is positive if it lies on the z axis
 above zero and negative if below zero
- In the general case the orbit will be eccentric due to the inward radial Lorentz force from the freeze field



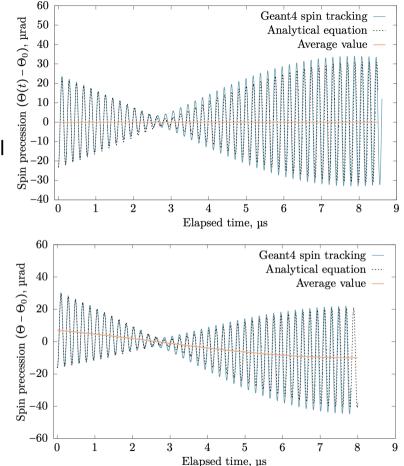
Non-circular muon orbit

- The effect was observed also in the Geant4 simulations and is consisten with the analytical estimate
- Calculations with the analytical equations show that for $\alpha = 0.1^{\circ}$ and orbit displacements up to 5 mm the eccentricity of the orbit should be kept below 0.1
- The eccentricity caused by the freeze field is significantly lower and does not pose a problem
- This effect could constrain the magnetic field uniformity (analysis pending)



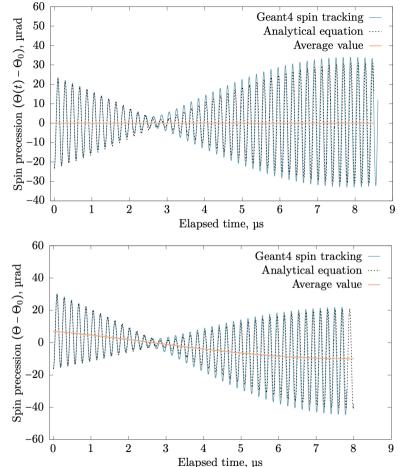
Comparison with G4

- Compared the analytical equations with a Geant4 simulation with the same parameters (weakly focusing coil current, radius; inital spin vector; etc...)
- In both attempts the frozen spin condition is not perfectly met (for illustration)
- Top: $E_y = 0$; Bottom: $E_y = E_{freeze} / 10^6$
 - ^I Note: bottom trend is similar to EDM of $10^{-21} e.cm$



Comparison with G4

- Note that the oscillation frequency is not perfect as the fields are described by first order approximation
- Nevertheless, the equations describe the spin precession well in a very general scenario



• The observed change in the asymmetry between the upstream and downstream detectors due to a non-zero EDM is to a first approximation equal to:

$$\dot{A} = \frac{\eta}{2} \frac{e}{m_0} \beta_z B_y \alpha P.$$

- Where $\eta \sim 10^{-9}$ for $d_e = 10^{-23} e. \text{cm}$
- It has a similar meaning as the anomalous magnetic moment $a \sim 10^{-3}$
- One can expect that effects due to the magnetic dipole moment should be suppressed to a level better than 10^{-6}

$$\vec{\Omega} = -\frac{e}{m_0} \begin{bmatrix} a\vec{B} + \left(\frac{1}{\gamma^2 - 1} - a\right)\frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2}\left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right) \end{bmatrix}$$

$$\begin{array}{c} \mathsf{MD} \qquad \qquad \mathsf{ED} \\ \mathsf{M} \qquad \qquad \mathsf{M} \end{array}$$

