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Frozen spin technique in a nutshell

g-2 term EDM term 

 Relativistic spin precession of a charged 
particle (Thomas-BMT equation) → 

 By applying an appropriate radial E-field to 
the muon we negate the g-2 term.

 Ideally any observed spin precession would 
be due to a non-zero EDM.

 Asymmetry between upstream and 
downstream emitted decay positrons.

 Some asymmetry could still be observed 
due to systematic effects




 Effects that lead to a real or apparent precession of the spin around the radial axis 
that are not related to the EDM. 

 Types of systematic effects:

 Early to late variation of detection efficiency of the EDM detectors (apparent)
 Coupling of the anomalous magnetic moment with the EM fields of the 

experimental setup (real)
 Dynamical phase

 Geometric phase

Systematic effects
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Early-to-late detection efficiency changes
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 Strong pulsed magnetic field → eddy 
currents, noise, heat in detectors and 
associated electronics.

 Time-dependent changes in the detection 
efficiency of a set of detectors will be seen 
as a false EDM signal.

 Significant only for low-energy positrons 
that would produce a weak signal and could 
be missed by the detectors.

y

Nu=εuN N d=ε d N

EDMdetectors

ε=ε (t )



 For high positron energies – preferentially emitted in the direction of the 
muon spin.

 Energy spectrum and directional asymmetry as a function of the 
fractional energy x = E/Emax:

Kinematics of Michel decay positrons
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Kinematics – g-2 experiments
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 For high momentum muons the angular distribution is Lorentz boosted along 
the momentum.

 For large boosts practically all decay positrons are emitted in the forward 
direction – no directional asymmetry.

 Intensity asymmetry: Dependence of the number of decay positrons at a given 
enrgy on the spin.



 The first stage – 28 MeV/c surface muons.

 Both directional and intensity dependence on 
the spin direction.

 Precession due to the g-2 can be
measured using intensity asymmetry.

 Precession due to EDM can be measured
from the direction of emitted positrons:

 up-down asymmetry.

 Only positrons above 25 MeV contribute 
significantly to the asymmetry.

muEDM kinematics
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 Only four sources of spin precession 
that could lead to EDM-like signal:

 Net azimuthal B-field
(zero if no current flows through the area enclosed 
by the orbit)

 Time variable radial B-field
(constraints on the pulse width and decay time of 
the magnetic kick)

 Net longitudinal E-field

 Geometric phases

Real spin precession systematic effects
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 Limit on the average Ez field as a 
function of the muon velocity shown 
as a fraction of the radial component:

 Effect cancels if particles are injected 
alternatively CW and CCW and 
subtracting counts in the detectors.

 CW and CCW orbit directions are done 
by switching the B-field direction.

Constraints on the average longitudinal E-field
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 The geometric phase is a phase difference acquired 
over the course of a cycle in parameter space.

 Parallel transport of a vector around a closed loop.

 The angle by which it twists is proportional to the area 
inside the loop:

– In classical parallel transport it’s equal.

– In quantum mechanics it’s -½ (fermions).

 If oscillations around two axes are combined we can 
observe a phase shift (false EDM)
even if the the time average of each oscillation is zero.

Geometric (Berry’s) phase
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 Spin precesses around axis x with amplitude C1 and frequency Ωx, and around 
y with amplitude C2 and frequency Ωy. Phase difference between the two β0.

 The movement of the spin encloses an area A on some abstract surface. 
The area can be calculated from Green’s theorem:

 The geometric phase as a function time is then:

Calculation of geometric phases
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 In the case where the two oscillations have the same frequency the geometric 
phase is:

 The motion of the spin in this case is an ellipse with eccentricity defined by 
the phase difference between oscillations

– no phase difference: ellipse looks like a line – no geometric phase

– π/2 phase difference: ellipse is a circle and maximum area

Calculation of geometric phases
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 Spin precession due to misalignment of E-field:

– longitudinal oscillations due to stronger and 
weaker freeze field (cyclotron frequency)

– radial oscillations due to longitudinal E-field 
oscillating between upstream and 
downstream directions (cyclotron frequency)

Example of a geometric phase accumulation
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Tilted and shifted E-field with respect to the 
center of the muon orbit



 Major sources of possible systematic effects in the experiemnt are:

 Early-to-late variations in the detection efficiency of the EDM detectors:

– Only higher energy positrons above 25 MeV contribute to the measured 
asymmetry.

 Non-zero longitudinal E-field component:

– Effect cancels if we alternate between CW and CCW injections, 
determined by the polarity of the main solenoid.

 An analytical description of the geometric phases was developed and tested 
with G4 simulations:

– Places constraints on the E-field uniformity and alignment of the 
injection.

Conclusions
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Thank you for the attention!

muonEDM 
collaboration kick-off 
meeting May 2022 
(Pisa, Italy) → 



 Very stringent limit on the net 
longitudinal E-field.

 The effect changes sign with β.
(change in the longitudinal B-field direction)

 This places limits on the average muon 
momentum for CW and CCW injections.

 The cancellation works only if:

– the muon orbits are in the same 
place for CW/CCW

– E-field non-uniformity does not lead 
to too different average Ez fields for 
CW/CCW injections. 

Net longitudinal E-field
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 One can generate a longitudinal E-field 
with controllable intensity.

 Could be used to verify that we can 
observe EDM-like signal.

 Could be tuned to cancel the intrinsic 
average E-field of an imperfect 
electrode, e.g.:

– tune field until no signal is seen 
for CW, then measure CCW.

– would increase real signal to 
systematic effect ratio.

Artificial longitudinal E-field
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Limits on real spin precession effects
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*assuming electrode shape does not depend on magnetic field 
orientation



 A static radial B-field would create an offset in 
the position of the equilibrium orbit.

– Not a problem since we are interested in 
the change in the phase with time.*

 A time-variable Br can come from the magnetic 
kick or eddy currents caused by it.

 Assuming an exponentially decaying residual 
B-field after the kicker pulse one can 
determine limits on the decay constant as a 
fucntion of the analysis start time.

 Radial B-fields of less than 5 μT would not 
induce a significant spin precession.

Time-variable radial B-field
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Br = 0 T

Br > 0 T

* may or may not induce Berry’s phases



Sources of Ey field: electrode alignment
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Misalignment of the electric field

 The E field of an infinitely long coaxial 
cylinders is:



Shifting the field by r0 and rotating by α gives:

 Then average the new  field out 
over a circular orbit:

 It can be shown (numerically for now) that:

 For a circular orbit the misalignment 
of the anode or cathode cannot 
introduce a net horizontal E-field
(that was not there before)

 It also does not affect the ‘frozen spin’ 
condition



 The assumption for infinite coaxial cylinders holds if there are negligible 
fringe field in the region of interest

 ANSYS Maxwell simulations show less than 0.1 ppm horizontal component 
in ±20 cm region around ideal orbit

 

Sources of Ey field: fringe fields
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 Tapered cone shaped electrodes

 Smoothness of the electrodes close to the muon orbit (few centimeters)

 Generally sub-micrometer surface smoothness is possible with common 
machining and polishing techniques

 Cylindricity in the order of 50 nm is measurable even on large samples

Sources of Ey field: electrode non-uniformity
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 The condition to assume ideal uniformity is such that Ey 
is kept below the 0.5 ppm from Ef target

 If the radius of the anode or cathode is larger on one side 
than on the other then there will be a field component in 
the vertical direction

 Using a small angle approximation:

 The radius of the anode or cathode should not 
change with more than ΔR=150 nm (precursor) and 
ΔR=300 nm (final) along its length (L ~ 50 cm)

Requirements for electrode uniformity
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 Another source of a net vertical field would be a small 
protrusion on the surface of the electrode

 The E-field of a cylinder with radius R and surface charge 
density σ at a distance r is:

 The E-field from a small protrusion with area A at a 
distance Δz from the storage ring can be calculated from 
Coulomb’s law:

 Thus the maximum allowed area for a protrusion is:

 Assuming a spherical cap like protrusion at 2 cm from the 
storage ring – maximum allowed height h = 40 µm  

Requirements for electrode uniformity
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 Non-zero average Bz field if there is 
electric current flowing through the area 
enclosed by the muon orbit

 Write net current!

 From Biot-Savart’s law we can give a 
limit on the systematics due to such 
current

 Assuming non-insulated wire at the 
center of the orbit:

 Precursor: I < 250 mA

 Final experiment: I < 40 mA

Limit on the B-field parallel to the momentum
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 Limit on the kicker field decay time 
with relation to the injection angle

 Assumptions:

 half-sine kicker field intensity

 end of the kick is considered to be
at the 10% from maximum livel

 exponential decay of the ringing
signal with time constant τB

 the limit is such that the influence 
of the residual field is less than a given de at ~400 ns time

 Note: the constraint is lower for later times and stronger for earlier times

Limit on the radial B-field
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 Simulated short current pulse for the two 
anti-Helmholtz coils

 The solid black line shows the limiting 
decay time for an exponentially decaying 
pulse that goes below the limit at 400 ns 
(overshoot or undershoot)

 The influence of the simulated kicker field 
to the observed spin precession is 
negligible after 200 ns  

Limit on the radial B-field
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 A non-zero average Ey field can be 
generated if the orbit of the muons is 
eliptical and at the same time it is not 
perpendicular to the axis of the anode.

 the average field will be zero if the 
center of the orbit lies on the x axis

 it is positive if it lies on the z axis 
above zero and negative if below zero

 In the general case the orbit will be 
eccentric due to the inward radial Lorentz 
force from the freeze field 

Non-circular muon orbit
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 The effect was observed also in the Geant4 
simulations and is consisten with the 
analytical estimate

 Calculations with the analytical equations 
show that for α = 0.1° and orbit 
displacements up to 5 mm the eccentricity of 
the orbit should be kept below 0.1

 The eccentricity caused by the freeze field is 
significantly lower and does not pose a 
problem

 This effect could constrain the magnetic field 
uniformity (analysis pending)

Non-circular muon orbit
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 Compared the analytical equations 
with a Geant4 simulation with the 
same parameters (weakly focusing coil 
current, radius; inital spin vector;  
etc…)

 In both attempts the frozen spin 
condition is not perfectly met (for 
illustration)

 Top: Ey = 0; Bottom: Ey = Efreeze/106

 Note: bottom trend is similar to 
EDM of 10-21 e.cm

Comparison with G4
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 Note that the oscillation frequency is 
not perfect as the fields are described 
by first order approximation

 Nevertheless, the equations describe 
the spin precession well in a very 
general scenario

Comparison with G4
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 The observed change in the asymmetry between the upstream and downstream 
detectors due to a non-zero EDM is to a first approximation equal to:

 Where η ~ 10-9  for de = 10-23 e.cm
 It has a similar meaning as the anomalous magnetic moment a ~ 10-3

 One can expect that effects due to the magnetic dipole moment should be 
suppressed to a level better than 10-6

Systematic effects
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