The STRONG2020 and Radio MonteCarLow activities

LORENZO COTROZZI UNIVERSITY OF PISA AND INFN-PISA

15/05/2023: NEW FRONTIERS IN LEPTON FLAVOR, PISA

Outline

• Current theoretical and experimental a_{μ} scenario

Radio MonteCarLow and STRONG2020 activities

- Goal: hadronic e^+e^- database
 - Information we collect
 - > Steps to create it
 - Comparative plots available

Muon g - 2: theory vs experiment

uses R(s) (input from $e^+e^- \rightarrow hadrons$ experimental data)

3

Activities on low energy e^+e^- data

QCD accounts for $6 \cdot 10^{-5}$ of a_{μ} but also for 99.97% of total uncertainty

Radio MonteCarLow WG

- Radiative corrections and Monte Carlo generators for Low energies WG
- Goal: development of best radiative corrections and MC generators for low-energy e^+e^- and τ -decays data
- Active from 2006 to 2019

STRONG2020 Project

- Work Package under the EU Horizon 2020 grant agreement n. 824093
- Goal: create an annotated database for low-energy hadronic e^+e^- cross sections
- PrecisionSM DB: precision-sm.github.io
- Started in 2019

www.strong-2020.eu/

L. COTROZZI - 15/05/2023: NEW FRONTIERS IN LEPTON FLAVOR, PISA

Radio MonteCarLow activities

- 20 meetings between theorists and experimentalists from 2006 to 2019
- Efforts to develop MC generators for luminosity, $e^+e^- \rightarrow$ hadrons + leptons (+ γ from ISR), τ -lepton production and decays
- Final report, divided into 5 subjects:
 - 1. Luminosity measurements at low energies (up to B-factories energy)
 - 2. R(s) measurement with energy scan
 - 3. R(s) measurement with radiative return
 - 4. τ -lepton physics
 - 5. Calculation of vacuum polarization with emphasis on the hadronic contributions

Eur. Phys. J. C (2010) 66: 585–686 DOI 10.1140/epjc/s10052-010-1251-4	THE EUROPEAN PHYSICAL JOURNAL C					
Review						
Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data						
Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies						
S. Actis ³⁸ , A. Arbuzov ^{9,e} , G. Balossini ^{32,33} , P. Beltrame ¹³ , C. Bignamini ^{32,33} , R. Bonciani ¹⁵ , C.M. Carloni Calame ³⁵ , V. Cherepanov ^{25,26} , M. Czakon ¹ , H. Czyż ^{19,a,f,i} , A. Denig ²² , S. Eidelman ^{25,26,g} , G.V. Fedotovich ^{25,26,e} , A. Ferroglia ²³ , J. Gluza ¹⁹ , A. Grzelińska ⁸ , M. Gunia ¹⁹ , A. Hafner ²² , F. Ignatov ²⁵ , S. Jadach ⁸ , F. Jegerlehner ^{3,19,41} , A. Kalinowski ²⁹ , W. Kluge ¹⁷ , A. Korchin ²⁰ , J.H. Kühn ¹⁸ , E.A. Kuraev ⁹ , P. Lukin ²⁵ , P. Mastrolia ¹⁴ , G. Montagna ^{32,33,b,d} , S.E. Müller ^{22,f} , F. Nguyen ^{34,d} , O. Nicrosini ³³ , D. Nomura ^{36,h} , G. Pakhlova ²⁴ , G. Pancheri ¹¹ , M. Passera ²⁸ , A. Penin ¹⁰ , F. Piccinini ³³ , W. Płaczek ⁷ , T. Przedzinski ⁶ , E. Remiddi ^{4,5} , T. Riemann ⁴¹ , G. Rodrigo ³⁷ , P. Roig ²⁷ , O. Shekhovtsova ¹¹ , C.P. Shen ¹⁶ , A.L. Sibidanov ²⁵ , T. Teubner ^{21,h} , L. Trentadue ^{30,31} , G. Venanzoni ^{11,c,i} , J.J. van der Bij ¹² , P. Wang ² , B.F.L. Ward ³⁹ , Z. Was ^{8,g} , M. Worek ^{40,19} , C.Z. Yuan ²						

5

Overview of STRONG2020 project

• EU project to study strong interactions

Dedicated webiste

with hyperlinks

- PrecisionSM "Hadron Physics for Precision Tests of the Standard Model" with several goals:
 - Combine theory and experiment for BSM precision tests (R(s) measurements, Radiative corrections and MC generators)
 - >Compile an <u>annotated database</u> for low-energy hadronic cross sections in e^+e^- collisions
 - Measurements on HEPData
 - Papers on InspireHEP

Responsive plots of hadronic cross sections

STRONG2020: annotated database (link)

PrecisionSM Contents ▼ Docs About ▼ RSS feed	Search			Inpu	ıt data
Low energy e^+e^- channels database	Database for	$e^+e^- ightarrow \pi^+\pi^-$ channels			
Measurements Database:	Experiment	Year Reference (link to INSPIRE-HEP)	Link to Hepdata	Details	Status
$\circ~e^+e^- ightarrow \pi^+\pi^-$	BESIII (BEPC, Beijing)	2016 Phys.Lett.B 753(2016) 629-638 [errata: Phys.Lett.B 812 (2021) 135982]	ins1385603	details	Finalized
 HEPData submissions cured by PrecisionSM 	BaBar (SLAC, Stanford U.)	2016 Phys.Rev.D 86 (2012) 032013		details	In Preparation
HEPData submissions checks	CLEO (CESR, Cornell U.)	2018 Phys.Rev.D 97 (2018) 3, 032012	ins1643020	details	Finalized
• Plots	CLEO (CESR, Cornell U.)	2013 Phys.Rev.Lett. 110 (2013) 2, 022002	ins1189656	details	Finalized
Contents © 2023 PrecisionSM Group - Powered by Nikola	CLEOc (CESR, Cornell U.)	2005 Phys.Rev.Lett. 95 (2005) 261803	ins693873	details	Finalized
KLOE (DAPHNE, Frascati), 2017	KLOE (DAPHNE, Frascati)	2017 JHEP 03 (2018) 173		details	In Preparation
• status: in preparation	KLOF (DAPHNF, Frascati)	2012 Phone Pub 720 (2013) 336-343		details	In
• hepdata: 1634981					
method: Direct	Annotate				
• quotes:		- -			
$\circ ~ d\sigma/dQ^2(\pi^+\pi^-\gamma)$ (stat, syst)	• availab	le data			

- $\circ \,\,\sigma_{\pi^+\pi^-}$ (stat, syst)
- $\circ~F_{\pi}$ (stat, syst)
- energy[GeV]: 0.32 0.97
- radiative corrections:
 - $\circ~$ VP corr. updated to 'alphaQED16.tar.gz' package by F. Jegerlehner (2016)
 - $\circ~$ Remaining are in inspirehep-797438, inspirehep-859660, inspirehep-1208095
- comment:
 - $\circ~$ combination of KLOE08, KLOE10 and KLOE12 data;
 - $\circ~$ updates for inspirehep-797438, inspirehep-859660, inspirehep-1208095

Main work by A. Driutti, A. Lusiani and LC

energy ranges

- treatment of RC
- ...

Currently reviewing $e^+e^- \rightarrow \pi^+\pi^-$

Steps to create the database

- 1. **DATA COLLECTION**: inputs of hadronic (starting from $\pi^+\pi^-$) e^+e^- data from published experiments (see next slide) InspireHEP.net
- 2. UPLOAD DATA IN PUBLIC REPOSITORY → HEPData.net J
- Collaboration point-of-contact (or STRONG2020 coordinator) submits data
- Reviewer appointed for cross-checks: no mistakes, HEPData.net prescriptions
- If validated: data is posted, can be catalogued and used
- 3. CATALOGUE DATA IN ACCESSIBLE WAY: precision-sm.github.io
- Website files on GitHub
- Created with Nikola static website generator
- 4. **PROVIDE TOOLS TO ELABORATE DATA** (see following slides)

List of available e^+e^- data

- Collected $e^+e^- \rightarrow \pi^+\pi^-$ channel for now. Experiments/Points-of-contact:
- ≻BaBar / A. Lusiani, B. Malaescu
- ≻BESIII / A. Denig, C. Redmer
- ≻KLOE / S. Mueller
- Novosibirsk / F. Ignatov, M. Achasov (CMD-2, OLYA, CMD, TOF, VEPP, SND)

Hide Publication Information	📥 Download All 🚽	RE	E+ E> PI+ PI-	Visualize
on form factor in the rho-meson	🛃 View Analyses 🗸	SQRT(S)	0.6-0.97 GeV	45-
ergy range with the CMD-2	√ Filter 2 data tables	SQRT(S) [MEV]	ABS(FORMFACTOR(NAME=PION))**2	35 -
tector	Table 1	600.0	7.89 ±0.33 ±0.8% sys,Overall systematic error.	30 -
e CMD-2 collaboration	Data from T 2,F 9	630.0	10.53 ±0.29 ±0.8% sys,Overall systematic error.	25-
<pre>metshin, R.R., Aulchenko, V.M., Banzarov, V.Sh., kov, L.M., Bashtovoy, N.S., Bondar, A.E., ndarev, D.V., Bragin, A.V., Dhawan, S.K., elman, S.I.</pre>	10.17182/hepdata.41782.v1/t1 Measured values of the pion form factor. The errors are statistical only.	660.0	14.21 ±0.34 ±0.8% sys,Overall systematic error.	20 -
		690.0	21.27 ±0.42 ±0.8% sys,Overall systematic error.	10-
ys.Lett.B 648 (2007) 28-38, 2007.	Table 2 >	720.0	31.96 ±0.41 ±0.8% sys,Overall systematic error.	5-
os://doi.org/10.17182/hepdata.41782	Data from T 2 10.17182/hepdata.41782.v1/t2 Measured value of the bare PI+ PI- cross section including corrections	750.0	42.13 ±0.62 ±0.8% sys,Overall systematic error.	600 650 700 750 800 850 SORT(S) [MEV]
urnal INSPIRE Resources		760.0	43.62 ±0.83 ±0.8% sys,Overall systematic error.	Sum errors 🗹 Log Scale (X) 🗆
Pivet Analysis	for radiative effects but excluding corrections for vacuum polarization	764.0	44.48 ±0.73 ±0.8% sys,Overall systematic error.	Log Scale (Y)

```
≻CLEO / G. Venanzoni
```

ADONE / G. Venanzoni (BCF, MEA)
Orsay / G. Venanzoni (DM-1, DM-2, ACO)
CERN-NA007

> Some of them are **finalized**, others are **in preparation** (inserted on HEPData.net)

STRONG2020 coordinators and reviewers: A. Driutti, A. Lusiani

Examples of notebooks and responsive plots

Summary, conclusion and acknowledgements

- Efforts for more than 20 years to improve MC and RC of e^+e^- at low energies
- Radio MonteCarLow activities still important for evaluating a_{μ} , HVP-LO
- STRONG2020 is contributing with a database for low-energy hadronic cross sections with relevant information (RC treatment, systematic errors, ...)
- Stay tuned for updates on https://precision-sm.github.io/!
- This work was supported by the European Union STRONG2020 project under Grant Agreement Number 824093
- We thank the Points-of-Contact of the experiments who are helping us very much!!

11

THANK YOU VERY MUCH FOR YOUR ATTENTION!

LORENZO COTROZZI – <u>LORENZO.COTROZZI@PHD.UNIPI.IT</u> PHD CANDIDATE IN PARTICLE PHYSICS AT THE UNIVERSITY OF PISA

LARGO BRUNO PONTECORVO 3/BUILDING C, ROOM 192, PISA

BACKUP SLIDES

CMD-3

- Why CMD-3 result is so different from others? We don't know...
- Do we use new method? No, it is exactly the same as for CMD-2 and SND, but more statistics (systematics studies) and better detector
- Is there problem with angle measurement (fiducial volume)? Unlikely: two systems, asymmetry, angle distribution
- Is there problem with RC calculation? Unlikely: CMD-2 and SND uses the same code; asymmetry. But it is a showstopper for better precision. And there could be potential systematic shift in RC for pions (due to limitations of sQED).
- Is there problem with event separation? Unlikely: three methods agree (the first measurement with several methods)
- Is there problem with trigger? Unlikely: should lead to shift of $\sigma(\mu\mu)$.
- Stupid mistake?
 - Always possible, but we've done the whole analysis on MC data

Ivan Logashenko

Questions

CMD-3 pion formfactor measurement

L. COTROZZI - 15/05/2023: NEW FRONTIERS IN LEPTON FLAVOR, PISA