New Frontiers in Lepton Flavor Pisa, Italy | May 15-17, 2023

Background Studies and Normalization of Signal Events in the Mu2e Experiment

Reuven Rachamin for the Mu2e-collaboration

Reuven Rachamin I Institute FWOR I www.hzdr.de

The Mu2e Experiment

- The Mu2e experiment is currently being constructed at Fermilab in the USA
- <u>Goal</u>: to search for the neutrino-less conversion of negative muons into electrons in the field of an aluminum nucleus $(\mu^- + Al \rightarrow e^- + Al)$

- 8 GeV proton beam hits a tungsten target and produces pions
- The pions are guided by a magnetic field toward the transport solenoid, where they decay into muons
- The muons hit the aluminum-stopping target, where they either decay or undergo a capture reaction
- Detectors (tracker and calorimeter) search for the conversion electrons

The Mu2e Experiment

- The muon-to-electron conversion process results in a monochromatic electron with an energy of 104.97 MeV
- The goal is to reach a single event sensitivity of 3×10^{-17} on the conversion ratio $(R_{\mu e} = \frac{\mu^{-} + Al \rightarrow e^{-} + Al}{\mu^{-} + Al \rightarrow nuclear \ capture})$
 - four orders of magnitude higher than previous related experiments
- To reach the desired sensitivity, two important tasks should be accomplished:
 - all backgrounds that could mimic the conversion signal should be controlled
 - the signal events should be normalized accurately

Objectives

- to investigate the beam-related and cosmic rays-related backgrounds using several Monte Carlo (MC) codes
 - MC code: MCNP6, FLUKA2021, MARS15, and GEANT4 (the official Mu2e simulation code)
 - focus on the prediction credibility of each code
 - to evaluate the performance of the detector system used for the signal events normalization

Antiprotons beam-related background

- Protons hitting the tungsten target produce antiprotons that could reach the aluminum stopping target, annihilate and produce background electrons
- Pions created in the transport solenoid by antiproton interactions can produce background electrons via radiative pion capture
 - a part of this background can be rejected by a cut on the signal time window
- <u>MC Investigation</u>: antiproton yields from a 1.9 GeV/c and a 2.1 GeV/c antiproton pencil beam hitting a tungsten cylindrical target (R=0.315 cm, L=16 cm)

\overline{p} beam momentum of 1.9 GeV/c												
heta	Geant4	MCNP6	Δ	FLUKA	Δ	MARS15	Δ					
$0^{\circ} - 10^{\circ}$	3.11	3.23	3.7%	3.38	8.5%	3.19	2.4%					
$10^\circ - 45^\circ$	$5.38 \cdot 10^{-2}$	$2.28 \cdot 10^{-2}$	-57.5%	$2.52 \cdot 10^{-2}$	-53.2%	$1.47 \cdot 10^{-2}$	-72.6%					
		\overline{p} beam n	nomentum	of 2.1 GeV/	c							
θ	Geant4	\overline{p} beam model beam model \overline{p}	nomentum Δ	of 2.1 GeV/c FLUKA	$\simeq \Delta$	MARS15	Δ					
$\frac{\theta}{0^{\circ} - 10^{\circ}}$	Geant4 3.01	\overline{p} beam m MCNP6 3.04	$\frac{\Delta}{1.0\%}$	of 2.1 GeV/c FLUKA 3.22	$\frac{\Delta}{7.1\%}$	MARS15 3.01	Δ					

			\overline{p} beam n	nomentum	of 1.9 GeV/c	;					
	heta	Geant4	MCNP6	Δ	FLUKA	Δ	MARS15	Δ			
45	$5^{\circ} - 90^{\circ}$	$4.43 \cdot 10^{-3}$	$7.34 \cdot 10^{-4}$	-83.4%	$1.47 \cdot 10^{-3}$	-66.9%	$6.42 \cdot 10^{-4}$	-85.5%			
90	$^{\circ}-135^{\circ}$	$7.87 \cdot 10^{-5}$	$3.13 \cdot 10^{-5}$	-60.3%	$5.47 \cdot 10^{-5}$	-30.4%	$3.28 \cdot 10^{-5}$	-58.3%			
135	$5^{\circ} - 180^{\circ}$	$8.26 \cdot 10^{-6}$	$4.57 \cdot 10^{-6}$	-44.7%	$1.71 \cdot 10^{-6}$	-79.3%	$6.02 \cdot 10^{-6}$	-27.1%			
	\overline{p} beam momentum of 2.1 GeV/c										
	θ	Geant4	MCNP6	Δ	FLUKA	Δ	MARS15	Δ			
45	$5^{\circ} - 90^{\circ}$	$4.12 \cdot 10^{-3}$	$7.80 \cdot 10^{-4}$	-81.1%	$1.78 \cdot 10^{-3}$	-56.8%	$7.09 \cdot 10^{-4}$	-82.8%	ste the		
90	$^{\circ}-135^{\circ}$	$2.35 \cdot 10^{-4}$	$3.17 \cdot 10^{-5}$	-86.5%	$6.70 \cdot 10^{-5}$	-71.5%	$3.53 \cdot 10^{-5}$	-84.9%	restimates		
135	$5^{\circ} - 180^{\circ}$	$3.06 \cdot 10^{-5}$	$4.20 \cdot 10^{-6}$	-86.3%	$2.24 \cdot 10^{-6}$	-92.7%	$6.23 \cdot 10^{-6}$	-79.7%	urt overce angle		
								GEA	Ni at lars		
								(- p)	,erc.		
	2.1 GeV/c j	pbar momentum			2.1 GeV/c pbar	momentum		2.1 G	eV/c pbar momentum		
10 ⁻² E	45	°< θ < 90°		10 ⁻³ E	90° < 0 < 1	35°		³ F	θ > 135°		
	$\langle \mathbf{N} \rangle$	Ge	ant4			— Gea	nt4	L \125	Geant4		
F /			UKA2021			- MC - FLU	NP6.1 IKA2021				
G 10 ⁻³	$\langle \frown \rangle$	<u> </u>		10		— MA			MARSIS		
	/ \		V(c ⁻¹ s	₩ /							
5				10 ⁻⁵			َنْ أَنْ أَنْ أَنْ أَنْ أَنْ أَنْ أَنْ أ				
10-4					The fire of the second se		imary				
d d				10-6	Pin nin		g 10	6 			
N/dþ			- Ndbu	10			odp/N				
Z 10 ⁻⁵			PN/I	-			1 N d				
				10 ⁻⁷			10	7			
	[45°, 90°]			[90° ,	135°]		-				
10-6	04 06 00			10-8			10	8 0 0 2 0 4 0 6			
0 0.2	0.4 0.0 0.8	(GeV/c)	.0 2 2.2	0 0.2 0.	-4 0.0 0.8 1 1. p(GeV/	2 1.4 1.6 1.) c)	0 2 2.2	о олы 0.т 0.0	p (GeV/c)		

Page 6

Member of the Helmholtz Association

Reuven Rachamin I Institute FWOR I www.hzdr.de

Cosmic rays-related background

- The experiment has a cosmic ray veto (CRV) system, suppressing the background due to the cosmic rays that could hit the stopping target
- The CRV system is shielded by 1 m of (standard) concrete
- The concrete absorbs <u>cosmic neutrons</u>, forming an additional possible background source

- <u>MC Investigation</u>: transmission of cosmic neutrons in a 10x10x1 m³ block of concrete
 - neutron source: monoenergetic neutron pencil beams
 - Ekin = 0.25 GeV, 0.5 GeV, 2.5 GeV, 5.0 GeV, and 10 GeV

- Spectra of neutrons after 1 m concrete generally differ by less than a factor 2
- The elastic peak: GEANT4 is about 2.5 lower than MCNP6 and FLUKA2021

- The normalization of the signal events is planned to be done using a detector system made of an <u>HPGe detector</u> and a <u>Lanthanum Bromide</u> detector
 - will measure the rate of muons stopped on the aluminum target
 - looking at the emitted characteristic X-and γ-rays of energies up to 1809 keV

- The detector system was tested at the ELBE facility (HZDR)
 - under conditions similar to the ones expected at the Mu2e experiment

August 2017: Test of a HPGe detector

• <u>Aim</u>: to measure HPGe detector performance in terms of energy resolution and radiation damage and to understand the best detector geometry and position

Energy resolution from spectrum analysis between 3 keV and 6 keV

- No radiation damage on the detector found after beamtime
- No degradation in energy resolution after beamtime
- The data has been used to exercise and test reconstruction algorithms
- Observation of single spectral lines over high-rate bremsstrahlung background with high average photon energy is possible

Sept 2021: Test of the LaBr₃ detector

- <u>Aim</u>: to test whether the LaBr₃ detector system could deal with the rate fluctuations anticipated at the Mu2e experiment
- A calibration source including Y-88 line at 1836 keV was used to mimick the muon capture on aluminum emission at 1809 keV
 - determine energy resolution for 1836 keV line over Bremsstrahlung spectrum at increasing levels of gELBE electron current
- "Nominal" expected Mu2e conditions were found at a pulse frequency of 813 kHz and 1.1 µA electron current
 - 150 kcps with 3.8 MeV average photon energy

Calibration Source (Including Yttrium-88)

Member of the Helmholtz Association

Reuven Rachamin I Institute FWOR I www.hzdr.de

Summary

- Two tasks for supporting the Mu2e experiment design were performed:
 - investigation of the backgrounds via MC simulations
 - testing of the detector system for the signal events normalization
- The MC simulations were performed using GEANT4, FLUKA2021, MCNP6, and MARS15 codes
 - to evaluate the prediction credibility of the codes and tune the simulation setup
- The normalization will be provided by measuring the total number of muon captures via a system of HPGe + LaBr₃ detectors
 - will measure the rate of 1809 keV γ -rays emitted from the stopping target's aluminum discs when muons are captured
- The detectors are currently being set up in Mu2e building

Thank you for your attention!

The Stopping-Target Monitor shieldhouse design

- HPGe detector needs to be in an angled position due to limited space
- Detectors "see" the Aluminum stopping target through collimator holes in tungsten shielding block.

The Mu2e Experiment

Pulsed proton beam allows definition of a "Live Window" for the signal to suppress prompt background (1695 ns peak-to-peak):

- Fermilab accelerator complex provides optimal pulse spacing for Mu2e
- 700 ns delay allows to suppress prompt background from pions by ${\sim}10^{-11}$
- Must achieve extinction (N_{p⁺} out of bunch)/(N_{p⁺} in bunch) $\leq 10^{-10}$