

# The Injection Channel of the muEDM Experiment

Anastasia Doinaki

New Frontiers in Lepton Flavor

Pisa, 16.05.2023

PAUL SCHERRER INSTITUT



#### **Injection Channel**







**<u>Goal</u>** Off-axis injection of muons into a solenoid.

Muons (p $\approx$  28 MeV/c) from pion decay at rest ( $\pi E_1$ ).

Muons injected through a Collimation Channel (ID=15 mm, l=800mm).

Around the Collimation Channel, a SuperConducting (SC) Shielded Channel (SC-Channel) to magnetically shield the Injection Channel.



#### Magnetically Shielded Channel

Muons transported from a low-field (fringe field<1T) to a high-field region (solenoid~3T)  $\implies$  muons will spiral in and then spiral out (Magnetic Mirror Effect).



A magnetically shielded channel is needed for the transportation of the muons from the exit of the  $\pi$ E1 beamline in the solenoid, and it consists of:

<u>Fringe field<1T</u>: Thick Iron Tubes

<u>Solenoid~3T</u>: SC-Shielded Tubes

# Superconductivity and Superconducting-Shielded Prototypes

<u>Supercoductivity</u> (SC) is observed in many metals when they are cooled down below a certain, critical, temperature.

zero resistance

Electric current loops appear on the surface of the metal when it becomes superconducting. These currents (eddy currents), create a magnetic field that compensates the external, applied magnetic field.

> Total magnetic field becomes zero in the SC-volume.

<u>Prototype I</u>: High-Temperature Superconducting (HTS) Tape, helically coiled around a copper tube.

<u>Prototype II</u>: Copper tubes wrapped with Nb-Ti/Nb/Cu SC-Sheets (borrowed from CERN).

<u>Prototype III</u>: Combination of a Bi-2223 casted tube with superconducting tape wrapped around it.







## Superconductivity and Superconducting-Shielded Prototypes

<u>Supercoductivity</u> (SC) is observed in many metals when they are cooled down below a certain, critical, temperature.

> zero resistance

Electric current loops appear on the surface of the metal when it becomes superconducting. These currents (eddy currents), create a magnetic field that compensates the external, applied magnetic field.

> Total magnetic field becomes zero in the SC-volume.

<u>Prototype I</u>: High-Temperature Superconducting (HTS) Tape, helically coiled around a copper tube.

<u>Prototype II</u>: Copper tubes wrapped with Nb-Ti/Nb/Cu SC-Sheets (borrowed from CERN).

<u>Prototype III</u>: Combination of a Bi-2223 casted tube with superconducting tape wrapped around it.





#### Prototype 0



Study of the SC- shielding effectiveness of SC-shielded injection tubes under the magnetic field of a Helmholtz coil:

✓ By measuring the magnetic field in SC-tubes with and without SC-shielding at room and cryogenic temperatures.





Study of the SC- shielding effectiveness of SC-shielded injection tubes under the magnetic field of a Helmholtz coil:

- ✓ By measuring the magnetic field in SC-tubes with and without SC-shielding at room and cryogenic temperatures.
- Cryogenic Temperature measurements taken by submerging the system, Helmholtz coil plus SC-tube, in a cryogenic (LN<sub>2</sub>) bath.



Study of the SC- shielding effectiveness of SC-shielded injection tubes under the magnetic field of a Helmholtz coil:

- ✓ By measuring the magnetic field in SC-tubes with and without SC-shielding at room and cryogenic temperatures.
- Cryogenic Temperature measurements taken by submerging the system, Helmholtz coil plus SC-tube, in a cryogenic (LN<sub>2</sub>) bath.



PAUL SCHERRER INSTITUT



Study of the SC- shielding effectiveness of SC-shielded injection tubes under the magnetic field of a Helmholtz coil:

- ✓ By measuring the magnetic field in SC-tubes with and without SC-shielding at room and cryogenic temperatures.
- Cryogenic Temperature measurements taken by submerging the system, Helmholtz coil plus SC-tube, in a cryogenic (LN<sub>2</sub>) bath.
- ✓ In correlation with the different mounting techniques and layers of the SC-shield.



# PAUL SCHERRER INSTITUT

## Setup SC-shielding Test

Study of the SC- shielding effectiveness of SC-shielded injection tubes under the magnetic field of a Helmholtz coil:

- ✓ By measuring the magnetic field in SC-tubes with and without SC-shielding at room and cryogenic temperatures.
- Cryogenic Temperature measurements taken by submerging the system, Helmholtz coil plus SC-tube, in a cryogenic (LN<sub>2</sub>) bath.
- ✓ In correlation with the different mounting techniques and layers of the SC-shield.



Why a Helmholtz coil?

We want to study both transverse and axial fields applied on our injection tubes. Also, it provides a relatively uniform magnetic field.



## Setup SC-shielding Test, Helmholtz Coil

Designed and constructed a Helmholtz coil; 100 mT at the center of the coil when inducing a current of I=20 Amps while the coils are connected in series.







## Setup SC-shielding Test, Helmholtz Coil

Designed and constructed a Helmholtz coil; 100 mT at the center of the coil when inducing a current of I=20 Amps while the coils are connected in series.







## Setup SC-shielding Test, Hall Sensor Support System

In order measure the magnetic field inside the SC-shielded tube; 3D designed and printed a Hall Sensor Support system that fulfilled the following requirements:

✓ Cryogenic-proof material, Onyx.

 $\bigcirc$ 

✓ The support remaining fixed inside the SC-tube 📫 7 sensor slots (4 horizontal, 3 vertical).











## Testing the SC-Shieled Injection Tube, Prototype 0

First measurements taken at <u>room temperature</u> along the injection plane of the SC-tube, **Prototype 0**.

Coils connected in parallel.

The Hall Sensor support was centered inside the SC tube and was placed in  $90^{\circ}$  angle:

✓ Horizontal sensors facing the opposite direction of the magnetic field lines.

Measurement Plan:

- Ramping up the magnetic field with 1Amps/s ramping up rate.
- Plateue at the following current I=-5, -10, -15, 15, 10 and 5 Amps for 60 seconds each.

**Note** At Room Temperature measurements we don't induce 20 Amps;

> Overheating of the Coil

PAUL SCHERRER INSTITUT







#### Testing Prototype 0, Room Temperature





| For I= 15 Amps : | Horizontal<br>Hall<br>Sensor | Position<br>[mm] | Simulated<br>Magnetic<br>Field [mT] | Measured<br>Magnetic<br>Field [mT] |
|------------------|------------------------------|------------------|-------------------------------------|------------------------------------|
|                  | H1                           | 9                | 32.83                               | 30.59                              |
|                  | H2                           | 33               | 36.02                               | 33.96                              |
|                  | H3                           | 58               | 35.98                               | 34.93                              |
|                  | H4                           | 82               | 32.51                               | 31.72                              |

٠



# Testing Prototype 0, Cryogenic Temperature

The system, Helmholtz Coil and SC-tube, was submerged in a cryogenic bath filled with  $LN_2$  (77K).

Ramping up the magnetic field with 1Amp/s, ramping up rate, up to I=20 Amps, induced current.



> The **Prototype 0** did not superconduct, although we can observe curved plateus (not sharp), indicating the existance of eddy currents.

16.05.2023

Conclusion

- A superconducting shielded channel is needed for the injection of muons from the exit of the  $\pi$ E1 beamline, low fringe field, to a 3T storage magnet, high magnetic field, for the muEDM experiment.
- Three prototypes are being developed and tested in the magnetic field of a Helmholtz coil.  $\succ$
- Study of the SC-shielding effectiveness.  $\checkmark$
- Running first tests with **Prototype 0** in room and cryogenic temperatures.  $\geq$
- <u>Next Steps</u>: Study the shielding efficiency as a function of :  $\succ$
- Different ramping up rates of the applied magnetic field.  $\checkmark$
- Different coiling/mounting techniques and layer numbers of the SC-shield.  $\checkmark$









### Thank you for your attention!

# Backup Slides



#### Testing Prototype 0, Room Temperature, I=5 Amps



| • | For $I = 5$ Amps : |  |
|---|--------------------|--|
|---|--------------------|--|

| Horizontal<br>Hall<br>Sensor | Position<br>[mm] | Simulated<br>Magnetic<br>Field [mT] | Measured<br>Magnetic<br>Field [mT] |
|------------------------------|------------------|-------------------------------------|------------------------------------|
| H1                           | 9                | 10.95                               | 10.36                              |
| H2                           | 33               | 12.00                               | 11.51                              |
| H3                           | 58               | 11.99                               | 11.87                              |
| H4                           | 82               | 10.86                               | 10.74                              |

#### Testing Prototype 0, Room Temperature, I=10 Amps



| For I= 10 Amps : | Horizontal<br>Hall<br>Sensor | Position<br>[mm] | Simulated<br>Magnetic<br>Field [mT] | Measured<br>Magnetic<br>Field [mT] |
|------------------|------------------------------|------------------|-------------------------------------|------------------------------------|
|                  | H1                           | 9                | 21.92                               | 20.49                              |
|                  | H2                           | 33               | 24.00                               | 22.75                              |
|                  | Н3                           | 58               | 23.99                               | 23.41                              |
|                  | H4                           | 82               | 21.71                               | 21.24                              |

•

#### Testing Prototype 0, Room Temperature, I=15 Amps



| For I= 15 Amps : | Horizontal<br>Hall<br>Sensor | Position<br>[mm] | Simulated<br>Magnetic<br>Field [mT] | Measured<br>Magnetic<br>Field [mT] |
|------------------|------------------------------|------------------|-------------------------------------|------------------------------------|
|                  | H1                           | 9                | 32.83                               | 30.59                              |
|                  | H2                           | 33               | 36.02                               | 33.96                              |
|                  | H3                           | 58               | 35.98                               | 34.93                              |
|                  | H4                           | 82               | 32.51                               | 31.72                              |



### Testing Prototype 0, Room Temperature, I=20 Amps



| For $I = 20 A$ | Amps : |
|----------------|--------|
|----------------|--------|

| Horizontal<br>Hall<br>Sensor | Position<br>[mm] | Simulated<br>Magnetic<br>Field [mT] |
|------------------------------|------------------|-------------------------------------|
| H1                           | 9                | 43.73                               |
| H2                           | 33               | 48.03                               |
| H3                           | 58               | 47.98                               |
| H4                           | 82               | 43.37                               |



### Different Ramping up Rates in Cryogenic Temperatures

