

CLFV Search in COMET

Yuki Fujii for COMET Monash University New Frontiers in Lepton Flavor 16th May 2023, Pisa

Muon Charged Lepton Flavour Violation (CLFV)

► No CLFV processes in the Standard Model

Massive neutrinos induce CLFV processes via neutrino oscillations

Clear sign of the new physics if discovered

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U^{\dagger}_{\mu i} U_{ei} \frac{m_{\nu_i}^2}{m_W^2} \right|^2 \approx 1$$
$$\approx CR(\mu^- N \to e^- N)$$

- Already new physics beyond the Standard Model but as tiny as almost undetectable

CLFV in EFT

- Searches for CLFV processes indirectly probing Λ_{NP} >
 1 PeV new physics scale
 - ⇔ Ultra large Moon collider, *14 PeV pp* (arXiv:2106.02048)
- ► Complementary searches available with different muon CLFV modes (mainly $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$)
 - Current upper bound; 7×10-13 @Au, 90%C.L. by SINDRUM II
 - COMET aims to search for a μ-e conversion with 100/10,000 times better sensitivity

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

(YəT) 10₂ θ_s=π/2 θ_v=π/4 10^{3} 10^{2} 2.5 (TeV) 10₂ θ_=π/2 θ_=π/2 $\boldsymbol{<}$ INDRUM-II [7e-13] (A)

SINDRUM-I [1e-12]

0.5

1.5

2.5

 10^{2}

µ-e conversion in BSM

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

Two Higgs doublet

New heavy bosons / anomalous coupling

Different interactions generate different processes \rightarrow complementary searches unveil the BSM structure

S. Davidson and B Echenard, Rare processes and Precision Frontier kick-off meeting (2020)

Signal and Backgrounds

COMET Experiment @J-PARC

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

7

COMET Phase-I ~**Proton beam**~

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

COMET Phase-I ~ Muon beam~

COMET Phase-I ~**CyDet**~

► CDC

 \sim ~5,000 wires, 20 stereo layers for momentum measurement, He:iC₅H₁₀=90:10, typical drift time < 400 ns

► Signal electrons' trajectories fully contained inside the volume

► CTH

> 2 layers of 64 segmented plastic scintillator rings at both ends of CDC for the timing measurement ► Suppress accidental events and low momentum particles by taking four-fold comciden¢€5-MeV e-Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023 background

COMET Phase-I ~CDC~

- > All stereo-angle wire cylindrical drift chamber to measure the momentum of incoming charged particle
- almost ready for the installation

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

11

\blacktriangleright Following the wiring completion in 2016, the full channels readout tested in 2019 \rightarrow

COMET Phase-I ~CTH~

- ► Four fold coincidence for better timing determination & less accidental events \Leftrightarrow the rate of e+/e- <10MeV is as high as 1-10 MHz
 - ► After 4-fold coincidence, the rate become less than 100 kHz (based on simulation studies)
 - Photon extraction with fibre bundles to use inexpensive commercial SiPMs

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

CTH counter + fibre prototype constructed and tested @Monash

Fibre bundle prototype

MPPC cooling system to achieve $\sim -40^{\circ}C$

CTH Counter supporting structure

COMET Phase-I ~**CyDet trigger**~

Y. Nakazawa's PhD thesis

- Further trigger rate suppression by using the CDC hit information @FPGA level to achieve the trigger rate less than 13 kHz with the maximum signal efficiency
 - Many BG hits deposit larger energy than signal ones without helix pattern contained inside the CDC
 - ► GBDT for hit classification to reduce the BG-like hits
 - Neural network based event classification trigger is being developed for further BG trigger suppression

ROC curve for hits efficienc) **5** 0.8 -9.0 Je 2-bit data backgr 5'0 l-bit data raw data 0.6 0.8 1 signal hit retention efficiency 0.2 0.4

Using mock data and real FPGA boards, 120 ns latency achieved without losing too many signals

Y. Fujii, M. Miyataki et.al. <u>NuFact 2023</u>

COMET Phase-I ~ **StrECAL**~

Direct beam measurement with Phase-II prototype detectors

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

LYSO crystals - Full energy absorption - Fast time response APD readout (space & radiation tolerance)

5 or more Straw stations

ECAL

- Each station consists of 2 horizontal and 2 vertical layers
- Vacuum tight ultra thin straw tubes

COMET Phase-I ~ **Straw Tracker**~

- ► The 1st full channel straw station constructed for COMET Phase-a/Phase-I beam measurements

 - ► Expected $\sigma_p \sim 180 \text{ keV/c}$
- aiming sensitivity in Phase-II

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

 \blacktriangleright Made of Aluminised mylar 20 μ mT, 10mm ϕ tolerate the 1 atm pressure difference, filled with Ar:Ethane 50:50

> Besides, 12 μ mT, 5mm ϕ straws have been developed and being tested, $\sigma_p \sim 150 \text{ keV/c}$ essential to achieve the

IJ

COMET Phase-I ~ Electron Calorimeter~

- Measure the electron arrival time with good energy resolution
- > Energy resolution better than 5% @100 MeV e_{τ} , $\sigma_t \sim 0.5$ ns, $\sigma_{X/Y} \sim 6$ mm, all validated in the test beam measurement
- \blacktriangleright LYSO 64 \times 16 modules to be installed in the Phase-I
 - > In Phase-II it'll be scaled up to 5,000 for $\sim 1.5 \text{ m}\varphi$ coverage with smaller gaps

COMET Phase-I ~**Other Systems**~

andand

TELEVISION .

Cosmic ray veto

Muon stopping target support system

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

CyDet support & insertion system

Ge muonic X-ray detector

COMET Phase-I ~ **Expected Sensitivity**~

 $\mathscr{B}(\mu^- N \to e^- N)|_{Al} = \frac{1}{N_u \cdot f_{cap} \cdot f_{pnd} \cdot A_{u-e}} = 3.0 \times 10^{-15}$

ltem	Value	Comment
Acceptance	0.2	Fixed
Trigger/DAQ efficiency	0.8	Subject to change
Track finding efficiency	0.99	SC
Track selection	0.9	SC
Momentum window	0.93	103.6 MeV/c < p < 106.0 MeV/c
Timing window	0.3	700 < t < 1170 ns, SC
Total	0.04	At least 25% error

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

 N_{μ} : #of stopped μ^{-} , 1.5×10¹⁶, exp. @ 150 days, \mathbf{f}_{cap} : fraction of stopped μ^{-} captured, 0.61, theory, \mathbf{f}_{gnd} : fraction of μ^{-} bound to ground state, 0.9 theory, A_{μ} : acceptance of μ -e signal, 0.041, exp...

COMET Phase-I ~**Background**~

Туре	Background	Estimated events
Physics	Muons decay in orbit	0.01
	Radiative muon campture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt beam	Beam electrons, μ/π decay-in-flight, others	Total < 0.0038
	Radiative pion capture	0.0028
Delayed beam	1 from delayed proton beam	Negligible
	Antiproton induced background	0.0012
Others	Cosmic rays (computationally limited)	< 0.01
Total		< 0.032
	• COMET Dhace Lie almost DC fuel consitivity	a apply limited by the

COMET Phase-I is almost BG free, sensitivity is only limited by the cost of radiation shielding and detector's rate capabilities!

COMET Phase-II ~Concept~

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

×100 Sensitivity means ×100 background particles

- DIO background suppression is essential
 - Better momentum resolution = less materials
 - ► Higher pile-up situation

Smaller diameter straw-tubes with thinner wall

Additional electron spectrometer to reduce lower momentum DIOs

COMET Phase-II

8GeV Proton Beam (56 kW)

Muon Transport Solenoid ~3T to select low momentum μand suppress π-

1)×20 powerful beam
2)×10 more muon stopping efficiency
3)C-shaped "Electron" spectrometer
→ ×200 times better sensitivity !

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

Production Target + High Efficiency Pion Capture Solenoid ~5T, Large aperture to effectively collect low momentum π/μ

21

COMET Phase-II ~**Sensitivity**~

 $\mathscr{B}(\mu^- N \to e^- N)|_{Al} = \frac{1}{N_u \cdot f_{cap} \cdot f_{gnd} \cdot A_{u-e}} = 1.4 \times 10^{-17}$

ltem	Value in P-I	Value in P-II	Comment
Acceptance	0.2	0.18	Fixed
Trigger/DAQ efficiency	0.8	0.87	Subject to change
Track reconstruction efficiency	0.99	0.77	SC
Track selection	0.9	0.94	SC
Momentum window	0.93	0.62	104.2 MeV/c < p < 105.5 MeV/c
Timing window	0.3	0.49	600 < t < 1170 ns, SC
Total	0.04	0.034	At least 25% error
			K. Oishi, <u>PhD thesis in 2020</u>

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

 N_{μ} : #of stopped μ^{-} , 3.3×10^{18} , exp. @ 230 days, f_{cap} : fraction of stopped μ^{-} captured, 0.61, theory, f_{gnd} : fraction of μ^{-} bound to ground state, 0.9 theory, A_{μ} : acceptance of μ -e signal, 0.036, exp..

Phase-a

V+

- ► After C-line completion at J-PARC hadron facility, temporary graphite target and muon beam measurement detectors were installed
 - ► COMET phase-a w/ very low intensity to study the beam profile before/after the TS

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

Muon position/timing detector

Range counter

Phase-a

The first muon beam was delivered to the COMET experimental area!

- Clear pulse structure + muon decay time structure were observed
- Some π^+ decay chain candidate events were seen
- > Detailed analysis is ongoing and possibility for taking the further beam profiling data early this year

Hadron experimental facility "C-line" is completed - J-PARC news article 17th March

Summary & Prospects

- > COMET searches for the μ -e conversion with the world's best sensitivity, 10-15 and 10-17 in its Phase-I and Phase-II
- Many things are ongoing to start the physics run in 2024/2025
- Recent phase-a experiment proved the low-p muon transportation scheme with a curved solenoid
- More to come in next few years, stay tuned!

Thank You

COMET Phase-I - Monash Activities -

What is CLFV?

Standard Model of Elementary Particles

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

- Modern Particle Physics
 - Based on the beautiful symmetries and conservation laws \rightarrow eventually broken
 - \blacktriangleright Forces are nicely unified \rightarrow but no gravity
 - ► No dark matters, neutrino masses, etc...
 - We know
 - ► Quarks mix (CKM matrix)
 - Neutrinos mix (PMNS matrix)
 - So why don't charged leptons mix?
 - Charged Lepton Flavour Violation (CLFV)

27

CLFV History

► Muons were discovered in 1936 accidentally

► "Who ordered that?" — I. I. Rabi

Dawn of the flavour physics

- Current upper limits (for muons = golden channels @90% C.L.)
 - ► $BR(\mu^+ \rightarrow e^+e^+e^-) < 1.0 \times 10^{-12}$ by SINDRUM @PSI, Nucl. Phys. B 299 (1988)
 - ► CR $(\mu \cdot N \rightarrow e \cdot N)|_{Au} < 7.0 \times 10^{-13}$ by SINDRUM II @PSI, Eur. Phys. J. C 47 (2006) 337
 - ► $BR(\mu^+ \rightarrow e^+\gamma) < 4.2 \times 10^{-13}$ by MEG @PSI, Eur. Phys. J. C 76 (2016) 434

Future Prospects (from my optimistic view)

Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

29

CLFV and Leptoquarks

► LQ can simultaneously explain both;

- Recent B physics anomalies
- Long standing g-2 anomaly

P.F. Perez, et.al. arXiv:2104.11229 Yuki Fujii, New Frontiers in Lepton Flavor, Pisa, Italy, 2023

Left plot; Scalar LQ, $\Phi 4$ satisfies all b Right plot; Allowed region from g-2 results anomalies All 1σ band

 \rightarrow all of them somehow satisfied

30

(c) Muons with p > 70 MeV/c around the stopping target

