Searches of Lepton-Flavour-Violating Decays of the Higgs Boson with the ATLAS Detector at the HL-LHC

based on (ATL-PHYS-PUB-2022-054) New Frontiers in Lepton Flavour, Pisa 2023

Naman Kumar Bhalla on behalf of the ATLAS Collaboration

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

Monday 15th May, 2023

Lepton Flavour Violation (LFV)

- ▶ Lepton flavour ightarrow accidental symmetry of the SM $(Y_{\ell\ell'} \propto \delta_{\ell\ell'})$
- Violation observed in nature ightarrow neutrino oscillations
 - \Rightarrow Motivates searches for LFV involving charged leptons (cLFV)
- ► LFV decays of the Higgs boson predicted by various extensions of the SM
- Search for independent signals:
 - $H \to e \tau$
 - $H \to \mu \tau$
 - $\Rightarrow~$ Limits on $H\rightarrow e\mu$ already too strong
- Obtain expected sensitivities at HL-LHC
 - Extrapolated from Run 2*(arXiv:2302.05225)
- Two channels: $H \to \ell au_{had}$ and $H \to \ell au_{\ell'}$
- Two methods for background estimation:
 - MC-template method
 - Symmetry method

*See Antonio's talk for details on Run 2 analysis

Most stringent limits on $\mathcal{B}(H o \ell \ell')$					
Decay	95%	C.L. upper limit			
$\begin{array}{c} H \rightarrow e \mu \\ H \rightarrow e \tau \\ H \rightarrow \mu \tau \end{array}$	$0.0044\%\ 0.20\%\ 0.15\%$	[CMS-PAS-HIG-22-002] [arXiv:2302.05225] [Phys. Rev. D 104 (2021) 032013]			

- ▶ Upgrade the LHC for 5 to 7.5 times nominal instantaneous luminosity
- Integrated luminosity ≈ 20 times higher than Run 2
- ► Allows more accurate measurements of new particles and observations of rarer processes
- ▶ Upgrade detectors to cope with high collision and pileup rates
- ▶ Physics runs scheduled to start in 2029 with higher beam energy

- ► Scale Run 2 measurement inputs ⇒ Inputs for HL-LHC fits
- ► Correct for following effects:
 - Larger integrated luminosity
 - Higher center-of-mass energy
 - Reduced uncertainties:
 - \Rightarrow Higher statistical precision
 - \Rightarrow Upgrades of the detector
 - $\Rightarrow\,$ More precise theory calculations

- ► Scale Run 2 measurement inputs ⇒ Inputs for HL-LHC fits
- ► Correct for following effects:
 - Larger integrated luminosity
 - Higher center-of-mass energy
 - Reduced uncertainties:
 - \Rightarrow Higher statistical precision
 - \Rightarrow Upgrades of the detector
 - $\Rightarrow\,$ More precise theory calculations

Integrated Luminosity

$$\mathsf{SF}_{\mathcal{L}_{\mathsf{int}}} = \frac{\mathcal{L}_{\mathsf{int}}(\mathsf{HL-LHC})}{\mathcal{L}_{\mathsf{int}}(\mathsf{Run}\ 2)} = \frac{3000\,\mathrm{fb}^{-1}}{138.4\,\mathrm{fb}^{-1}} = 21.68$$

- ► Scale Run 2 measurement inputs ⇒ Inputs for HL-LHC fits
- ► Correct for following effects:
 - Larger integrated luminosity
 - Higher center-of-mass energy
 - Reduced uncertainties:
 - \Rightarrow Higher statistical precision
 - \Rightarrow Upgrades of the detector
 - $\Rightarrow\,$ More precise theory calculations

Center-of-Mass Energy

$$\mathsf{SF}_{\sqrt{s}} = \frac{\sigma(14\,\mathrm{TeV})}{\sigma(13\,\mathrm{TeV})} \in [1.10, 1.21]$$

Integrated Luminosity

$$\mathsf{SF}_{\mathcal{L}_{\mathsf{int}}} = \frac{\mathcal{L}_{\mathsf{int}}(\mathsf{HL-LHC})}{\mathcal{L}_{\mathsf{int}}(\mathsf{Run}\ 2)} = \frac{3000\,\mathrm{fb}^{-1}}{138.4\,\mathrm{fb}^{-1}} = 21.68$$

► Scale Run 2 measurement inputs ⇒ Inputs for HL-LHC fits

- ► Correct for following effects:
 - Larger integrated luminosity
 - Higher center-of-mass energy
 - Reduced uncertainties:
 - \Rightarrow Higher statistical precision
 - \Rightarrow Upgrades of the detector
 - \Rightarrow More precise theory calculations

Center-of-Mass Energy

$$\mathsf{SF}_{\sqrt{s}} = \frac{\sigma(14\,\mathrm{TeV})}{\sigma(13\,\mathrm{TeV})} \in [1.10, 1.21]$$

Integrated Luminosity

$$\mathsf{SF}_{\mathcal{L}_{\mathsf{int}}} = \frac{\mathcal{L}_{\mathsf{int}}(\mathsf{HL-LHC})}{\mathcal{L}_{\mathsf{int}}(\mathsf{Run}\ 2)} = \frac{3000\,\mathrm{fb}^{-1}}{138.4\,\mathrm{fb}^{-1}} = 21.68$$

Uncertainties

- Stat. unc. on data-driven prediction $SF_{StatUnc}^{DataDriven} = 1/\sqrt{SF_{\mathcal{L}_{int}}} = 0.21$
- Stat. unc. on MC prediction (two cases) $SF_{StatUnc}^{MC, Nom.} = 0$, $SF_{StatUnc}^{MC, Alt.} = 0.21$
- Scale systematics for predicted detector upgrades and theory precision (SF_{Syst})

Expected Improvements in Systematic Uncertainties

SF_{Svst}

- ▶ Experimental uncertainties affected by
 - Harsher experimental conditions
 - Upgrades in detector
 - Better object reconstruction
 - \Rightarrow Expect $E_{\rm T}^{\rm miss}$ and flavour tagging unc. to improve
 - Stat.-related unc. on $\tau_{had-vis}$ \Rightarrow Expected to be negligible
- ► Stat.-related unc. on data-driven estimates ⇒ Scaled by SF^{DataDriven}_{StatUnc} = 0.21
- Higher precision in theory calculations predicted[†]
- ▶ Assume 1.0% uncertainty on luminosity ⇒ 1.7% in the Run 2 analysis

Naman Kumar Bhalla

Searches of LFV Decays of the Higgs Boson with the ATLAS Detector at the HL-LHC

 E_{T}^{miss} 0.50Flavour tagging *c*- and *b*-jets 0.50Jet. others 1.00 Electron and muon 1.00 $\tau_{had-vis}$ ID, stat.-related 0.00 $\tau_{had-vis}$, others 1.00Data-driven estimates, stat.-related 0.21Data-driven estimates, others 1.00Bkg. modelling, PDF 0.40Sig. modelling, PDF [0.41, 0.46]Modelling, others 0.50Luminosity 0.59

Uncertainties

Abstracted from [ATL-PHYS-PUB-2022-054]

15 May 2023 4 / 12

[†][Eur. Phys. J. C 78 (2018) 962]

MC-Template Method

ZW

$H \rightarrow \ell \tau_{\ell'}$ Channel

 $H \to \ell \tau \to \ell \ell' 2 \nu \quad \ell, \ell' \in e, \mu$

- Most backgrounds estimated via MC templates
- ▶ 4 regions per search: $(\tau_{\ell'}, \tau_{had}) \times (VBF, non-VBF)$
- ▶ Final discriminant: Boosted Decision Tree score
- Perform profile likelihood fits with scaled inputs
 - \Rightarrow Simultaneously for 2 POI: $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu\tau)$
 - $\Rightarrow~$ Using Asimov data set = \sum weighted backgrounds
- \blacktriangleright Obtain expected significances for $\mathcal{B}(H \to \ell \tau) = 0.1\,\%$ at HL-LHC

MC-Template Method Sensitivity

\blacktriangleright Compare sensitivity for $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ signal at HL-LHC

• Expected significance $> 8\sigma$ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1\%$

- VBF category of $\ell\tau_{\rm had}$ most sensitive with largest improvements
- VBF (non-VBF) category dominant in ℓau_{had} ($\ell au_{\ell'}$) channel

• Alternative case with SF^{MC, Alt.} = 0.21 worse by 15%~(5%) for $H \to e\tau~(H \to \mu\tau)$

Naman Kumar Bhalla

Impact of Uncertainties with MC-Template Method

Naman Kumar Bhalla

Symmetry Method

Material

$H \rightarrow \ell \tau_{\ell'}$ Channel

$$H \to \ell \tau \to \ell \ell' 2 \nu \quad \ell, \ell' \in e, \mu$$

- Data-driven approach for most backgrounds $\Rightarrow e \tau_{\mu}$ acts as background for $\mu \tau_{e}$ and vice-versa
- \blacktriangleright Currently only includes $\ell \tau_{\ell'}$ channel
- ▶ 2 regions per search: VBF and non-VBF
- Final discriminant: Neural Network score
- ▶ Directly sensitive to $\Delta \mathcal{B}(H \to \ell \tau_{\ell'})$
 - $\Rightarrow H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ anti-correlated \Rightarrow Perform 1 POI fits assuming other $\mathcal{B} = 0$

Events / 5 GeV

tt / et

AS Simulation = 13 TeV, 138 fb⁻¹

baseline, prompt leptons only

Obtain expected significances for $\mathcal{B}(H \to \ell \tau) = 0.1 \,\%$ from profile likelihood fits

 $(SM)_{uz} + H \rightarrow \mu \tau (B=10\%)$ (SM)_-R.*(SM)... $\rightarrow u \tau$ (B=10%) arXiv:2302 200 m_{coll} [GeV]

Symmetry Method Sensitivity

UNI FREIBURG

\blacktriangleright Compare sensitivity for $H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ signal at HL-LHC

• Expected significance > 3.5σ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1\%$

- Largest improvements in VBF category \rightarrow statistically limited in Run 2
- Both categories competitive for $e au_{\mu}$, but non-VBF better for μau_e

• Alternative case with $SF_{StatUnc}^{MC, Alt.} = 0.21$ worse by only 1.5% for both signals

Naman Kumar Bhalla

Impact of Uncertainties with Symmetry Method

15 May 2023

10 / 12

- Dominated by systematic uncertainties in both scenarios
 - Leading contributor: Stat. unc. on background prediction (BkgStat)
 - $\Rightarrow~$ Data-driven method \rightarrow indirectly dominated by statistical uncertainties in data
- ▶ Other significant contributors: E_{T}^{miss} (only in $H \rightarrow e\tau$), *Fakes* and *Jet* uncertainties

Naman Kumar Bhalla

Sensitivity Comparison of Methods $(H \rightarrow \ell \tau_{\ell'})$

UNI FREIBURG

- Compare sensitivities of the two background estimation methods
 - \Rightarrow Performed in $H \rightarrow \ell \tau_{\ell'}$ channel only

		Symmetry method			MC-template method				
	Case	$e\tau_{\mu}$		$\mu \tau_e$		$e\tau_{\mu}$		$\mu \tau_e$	
		Value	Ratio	Value	Ratio	Value	Ratio	Value	Ratio
2	VBF	0.55		0.48		0.41		0.41	
III	$\operatorname{Non-VBF}$	0.85		0.90		1.07		1.08	
щ	Combined	1.00		1.02		1.20		1.18	
HC	VBF	2.57	4.67	2.23	4.65	1.50	3.66	1.44	3.51
E	Non-VBF	2.60	3.06	2.96	3.29	4.19	3.92	3.69	3.42
ΞI	Combined	3.59	3.59	3.74	3.67	4.63	3.86	4.76	4.03

- Even at HL-LHC MC-template (Symmetry) method dominated by systematic (stat.) unc.
 With the current extrapolation
 - MC-template method shows slight advantage with both regions combined
 - $\Rightarrow~$ Sensitivity driven by the <code>non-VBF</code> region in $\ell \tau_{\ell'}$ channel
 - Symmetry method expected to perform better in the VBF region
- ▶ In reality it will depend on how systematic and statistical uncertainties evolve

Naman Kumar Bhalla

Conclusion

UNI FREIBUR

- Extrapolated from Run 2 measurements arXiv:2302.05225
- Two independent methods for background estimation
 - MC-template method: Both $\ell \tau_{had}$ and $\ell \tau_{\ell'}$ channels
 - \Rightarrow Expected $Z > 8\sigma$ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1 \%$
 - ⇒ Dominated by systematic uncertainties
 - Symmetry method: Only $\ell \tau_{\ell'}$ channel (for now)
 - \Rightarrow Expected $Z > 3.5\sigma$ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1 \%$
 - \Rightarrow Indirectly dominated by statistical uncertainties
 - $\rightarrow\,$ Would have to see how different uncertainties evolve
- Improvements in methods could further augment sensitivities

Naman Kumar Bhalla

15 May 2023 12 / 12

Conclusion

UNI FREIBUR

- Study sensitivity for LFV decays of Higgs boson at HL-LHC
 - Extrapolated from Run 2 measurements (arXiv:2302.05225)
- Two independent methods for background estimation
 - MC-template method: Both $\ell \tau_{had}$ and $\ell \tau_{\ell'}$ channels
 - \Rightarrow Expected $Z > 8\sigma$ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1\%$
 - Dominated by systematic uncertainties
 - Symmetry method: Only $\ell \tau_{\ell'}$ channel (for now)
 - \Rightarrow Expected $Z > 3.5\sigma$ at HL-LHC for $\mathcal{B}(H \to \ell \tau) = 0.1\%$
 - \Rightarrow Indirectly dominated by statistical uncertainties
 - \rightarrow Would have to see how different uncertainties evolve
- Improvements in methods could further augment sensitivities

12/12

$\ell au_{\ell'}$	$\ell au_{ m had}$				
exactly 1 <i>e</i> and 1 μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS				
$ au_{ m had}$ -veto	$ au_{ m had}{ m Tight~ID}$				
	Medium eBDT ($e\tau_{had}$)				
<i>b</i> -veto	<i>b</i> -veto				
$p_{\rm T}^{\ell_1} > 45 (35) {\rm GeV} {\rm MC}$ -template (Symmetry method)	$p_{\mathrm{T}}^{\ell} > 27.3 \mathrm{GeV}$				
$p_{\mathrm{T}}^{\ell_2} > 15 \mathrm{GeV}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 25 \mathrm{GeV}, \eta^{\tau_{\mathrm{had-vis}}} < 2.4$				
$30 \mathrm{GeV} < m_{\ell_1 \ell_2} < 150 \mathrm{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$				
$0.2 < p_{m}^{\text{track}}(\ell_2 = e) / p_{m}^{\text{cluster}}(\ell_2 = e) < 1.25 \text{ (MC-template)}$	$ \Delta n(\ell, \tau_{\text{had-vis}}) < 2$				
track d_0 significance requirement (see text)					
$ z_0 \sin \theta < 0.5 \mathrm{mm}$					
Baseline					
≥ 2 jets, $p_{\rm T}^{\rm j_1} > 40 {\rm GeV}, p_{\rm T}^{\rm j_2} > 30 {\rm GeV}$					
$ \Delta \eta_{\rm jj} > 3, m_{\rm jj} > 400 { m GeV}$					
Baseline plus fail VBF categori	sation				
-	veto events if				
-	$90 < m_{\rm vis}(e, \tau_{\rm had-vis}) < 100 { m GeV}$				
	$ \begin{array}{c} \ell \tau_{\ell'} \\ \\ \text{exactly 1 e and 1μ, OS$} \\ \tau_{\text{had}}\text{-veto} \\ \\ b\text{-veto} \\ p_{\mathrm{T}}^{\ell_{1}} > 45 (35) \text{ GeV MC-template (Symmetry method)} \\ p_{\mathrm{T}}^{\ell_{2}} > 15 \text{ GeV} \\ 30 \text{ GeV } < m_{\ell_{1}\ell_{2}} < 150 \text{ GeV} \\ 0.2 < p_{\mathrm{Tr}}^{\mathrm{trk}}(\ell_{2} = e) / p_{\mathrm{T}}^{\mathrm{cluster}}(\ell_{2} = e) < 1.25 (\text{MC-template}) \\ \text{track d_{0} significance requirement (see text)} \\ z_{0} \sin \theta < 0.5 \text{ mm} \\ \hline \\ \hline \\ Baseline \\ \geq 2 \text{ jets, } p_{\mathrm{T}}^{\mathrm{h}} > 40 \text{ GeV, } p_{\mathrm{T}}^{\mathrm{h}} > 3 \\ \Delta \eta_{\mathrm{ij}} > 3, m_{\mathrm{jj}} > 400 \text{ GeV} \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ - \end{array} $				

[arXiv:2302.05225]

Sample	Scale factor for \sqrt{s} change	MC template method	Symmetry method
ggF H	1.12	\checkmark	\checkmark
VBF H	1.13	\checkmark	\checkmark
$_{\rm VH}$	1.10	\checkmark	\checkmark
ttH	1.21	\checkmark	-
Z+jets	1.10	\checkmark	-
Diboson	1.10	\checkmark	-
Top-quark	1.16	\checkmark	-
W+jets	1.10	\checkmark	-
Fake bkg.	1.10	\checkmark	\checkmark
Symm bkg.	1.12	-	\checkmark

[ATL-PHYS-PUB-2022-054]

Scale Factors for Systematic Uncertainties

🖗 ΔΤΙ Δς
EXPERIMENT

Uncertainties	Extrapolation SF	MC template method	Symmetry method
$\tau_{\rm had-vis}$ ID, statrelated	0.00	\checkmark	-
$\tau_{\rm had-vis}$, others	1.00	\checkmark	-
Electron and muon	1.00	\checkmark	\checkmark
Flavour tagging c - and b -jets	0.50	\checkmark	\checkmark
Jet, others	1.00	\checkmark	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.50	\checkmark	\checkmark
Fake bkg., statrelated	0.21	\checkmark	\checkmark
Fake bkg., others	1.00	\checkmark	\checkmark
Lepton eff. corr., statrelated	0.21	-	\checkmark
Lepton eff. corr., others	1.00	-	\checkmark
Z bkg. modelling, PDF	0.40	\checkmark	-
Z bkg. modelling, others	0.50	\checkmark	-
Top-quark bkg. modelling, PDF	0.40	\checkmark	-
Top-quark bkg. modelling, others	0.50	\checkmark	-
Higgs modelling, PDF, ggF	0.41	\checkmark	\checkmark
Higgs modelling, PDF, VBF H	0.46	\checkmark	\checkmark
Higgs modelling, PDF, VH	0.46	\checkmark	\checkmark
Higgs modelling, others	0.50	\checkmark	\checkmark
Luminosity	0.59	\checkmark	\checkmark

[ATL-PHYS-PUB-2022-054]

Naman Kumar Bhalla

Sensitivity Metrics

- Significance (Z) for $\mathcal{B} = 0.1 \%$:
 - Test statistic for quantifying significance:

$$t_0 = \begin{cases} -2\ln\lambda(\mu=0), & \hat{\mu} \ge 0\\ 0, & \hat{\mu} < 0 \end{cases}, \quad p_0 = \int_{t_0^{\text{obs}}}^{\infty} f(t_0|\mu=0) \, \mathrm{d}t_0$$

- Z is # of std. dev. after which one-sided gauss ${\rm AUC}=p_0$
- Claim evidence at $\geq 3\sigma$, discovery at $\geq 5\sigma$
- ▶ 95 % CL upper limits (μ_{95}) on $\mathcal{B}[\%]$:
 - Test statistic for setting upper limits:

$$t_{\mu} = \begin{cases} -2\ln\lambda(\mu), & \mu \ge \hat{\mu} \\ 0, & \mu < \hat{\mu} \end{cases}, \quad p_{\mu} = \frac{\int_{t_{\mu}^{\text{obs}}}^{\infty} f(t_{\mu}|\mu) \, \mathrm{d}t_{\mu}}{\int_{0}^{t_{0}^{\text{obs}}} f(t_{0}|\mu=0) \, \mathrm{d}t_{0}} \end{cases}$$

Fig. 1 (a) Illustration of the relation between the *p*-value obtained from an observed value of the test statistic μ_i . (b) The standard normal distribution $\varphi(x) = (1/\sqrt{2\pi}) \exp(-x^2/2)$ showing the relation between the significance Z and the *p*-value

• μ_{95} is the smallest μ value with $p_{\mu} \leq 0.05$

 $\lambda(\mu)$: Profile likelihood ratio for signal strength μ

Naman Kumar Bhalla

Searches of LFV Decays of the Higgs Boson with the ATLAS Detector at the HL-LHC

1554]

7

Eur.

UNI FREIBURG

		Symmetry method				MC-template method			
	Case	$e au_{\mu}$		$\mu \tau_e$		$e au_{\mu}$		μau_e	
		Value [%]	Ratio	Value [%]	Ratio	Value [%]	Ratio	Value [%]	Ratio
2	VBF	$0.34_{-0.10}^{+0.14}$		$0.40^{+0.16}_{-0.11}$		$0.47^{+0.19}_{-0.13}$		$0.49^{+0.20}_{-0.14}$	
Run	Non-VBF	$0.230^{+0.092}_{-0.064}$		$0.214_{-0.060}^{+0.084}$		$0.183^{+0.073}_{-0.051}$		$0.177_{-0.050}^{+0.068}$	
	Combined	$0.190^{+0.075}_{-0.053}$		$0.188^{+0.074}_{-0.053}$		$0.161^{+0.063}_{-0.045}$		$0.162^{+0.063}_{-0.045}$	
HL-LHC	VBF	$0.070^{+0.028}_{-0.020}$	4.83	$0.084^{+0.034}_{-0.024}$	4.79	$0.128\substack{+0.050\\-0.036}$	3.67	$0.136\substack{+0.054\\-0.038}$	3.60
	$\operatorname{Non-VBF}$	$0.073^{+0.028}_{-0.020}$	3.16	$0.066^{+0.026}_{-0.019}$	3.22	$0.047^{+0.018}_{-0.013}$	3.91	$0.052^{+0.020}_{-0.014}$	3.43
	Combined	$0.051^{+0.020}_{-0.014}$	3.70	$0.052^{+0.020}_{-0.014}$	3.65	$0.042\substack{+0.016\\-0.012}$	3.86	$0.040\substack{+0.016\\-0.011}$	4.03

[ATL-PHYS-PUB-2022-054]

0.2

0.4

0.6 0.8

Impact on o

-1

ATLAS Preliminary

Projection from Run 2 data

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹

-0.8 -0.6 -0.4 -0.2

0

 $H \rightarrow e\tau_{..}$

τ_{had-vis} b-Tag

Lumi

Norm fact.

SigTheory

BkaTheory

Lepton

Jet+MET

Fakes μτ

Fakes et..

BkgStat

FullSyst

StatOnly

FullUnc

1

UNI FREIBURG

ATLAS