What's next in flavor physics [a biased point of view...]

> Gino Isidori [University of Zürich]

The two flavor puzzles

Flavor non-universal interactions

► The B anomalies [*what we learned, what's left*]

Leptoquarks & 4321

Conclusions

European Research Council Established by the European Commission

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

problem due to...

→ <u>Instability</u> of the Higgs mass term

 \rightarrow Ad hoc <u>tuning</u> in the model parameters

 \rightarrow Cosmological implementation of the SM

 \rightarrow General problem of any QFT

New Frontiers in Lepton Flavor – May 2023

…indicating

non-trivial properties

of the SM Lagrangian

if interpreted as EFT

Useful hints for its

UV completion

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

[SM flavor puzzle]

 \rightarrow Is there a deeper explanation for this peculiar structures?

Historical note: this year is a special anniversary year for flavor physics:

- '60 anniversary of the Cabibbo paper (1963)
- '50 anniversary of the Kobayashi-Maskawa paper (1973)

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental:

unitarity violation of the 2×2 (light) block below 10^{-3} !

N.B.: Despite the very good knowledge we have nowadays about the CKM matrix, we are not able to detect the presence of the 3^{rd} family by looking only at the 2×2 block (as one naively would have expected...)

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental:

What we observe in the Yukawa couplings is an <u>approximate U(2)</u>ⁿ symmetry acting on the <u>light families</u>

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

- I. The observed pattern of SM Yukawa couplings does not look accidental
 → Is there a deeper explanation for this peculiar structures?
- II. If the SM is only an effective theory, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes? What constraints these observations imply on physics beyond the SM?

 \rightarrow Which is the flavor structure of physics beyond the SM?

[SM flavor puzzle]

[*NP flavor puzzle*]

Eg:

• $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\mu}} = (individual) \text{ Lepton Flavor } [exact symmetry]$

• $m_u \approx m_d \approx 0 \rightarrow \text{Isospin symmetry } [approximate symmetry]$

The NP Flavor puzzle

The two flavor puzzles

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{C_i^{\text{L-J}}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

In principle, we could expect many violations of the accidental symmetries from the heavy dynamics (\rightarrow *new flavor violating effects*). However, beside some anomalies in B-physics, we observe none.

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions:</u>

N.B: These high scales can be a "mirage" (= artifact of the accidental symmetry).

[b]

The only unambiguous message of these bounds is:

No large breaking of the approximate $U(2)^n$ flavor symmetry at near-by energy scales

The big questions in flavor physics:

- Can we find an explanation for the Yukawa hierarchies?
- If the (residual) flavor symmetries are accidental symmetries, at which scale are they broken? Can be there multiple scales behind the origin of flavor?

 \rightarrow The "MFV paradigm":

Flavor non-universal interactions

For a long time, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

- Concentrate on the Higgs hierarchy problem -
- "Postpone" the flavor problem

"Protect" the Higgs sector with (TeV-scale) flavor-universal NP (*supersymmetry or Higgs compositness*), deferring the solution of the flavor problem to higher scales

This was a very motivated possibility in the pre-LHC era...

...but it has become a less compelling option after run-I and run-II results

New Frontiers in Lepton Flavor - May 2023

For a long time, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

New paradigm to address <u>both</u> the Higgs hierarchy problem and the flavor puzzle: <u>multi-scale</u> UV completion with *flavor non-universal* interactions

Main idea:

Panico & Pomarol '16 ... Bordone *et al.* '17 Allwicher, GI, Thomsen '20 Barbieri '21 Davighi & G.I. '23

Dvali & Shifman '00

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

New paradigm to address <u>both</u> the Higgs hierarchy problem and the flavor puzzle: <u>multi-scale</u> UV completion with *flavor non-universal* interactions

A renewed phenomenological interest in this type of approach has been triggered by the B-physics anomalies (*hinting to violations of lepton flavor universality, mainly in 3rd gen.*)

But the construction has an <u>intrinsic, more</u> <u>general, interest</u>:

- Explain the origin of the flavor hierarchies
- ✓ Allow TeV-scale NP coupled (mainly) to 3^{rd} gen. → Higgs sector stabilization

Allwicher, GI, Thomsen '20 Barbieri '21 Davighi & G.I. '23

New Frontiers in Lepton Flavor – May 2023

Flavor hierarchies from gauge non-universality [a brief detour]

To understand which are the viable options for TeV-scale dynamics, we recently analysed all the extensions of the SM gauge group compatible with the following three general assumptions: Davighi & G.I. '23

Obtain the U(2)ⁿ flavor symmetry as accidental symmetry of the (non-universal) gauge sector

- Elementary Higgs up to (at least) the TeV scale \rightarrow New states should preserve Higgs-mass stability \rightarrow NP coupled to 3rd generation should occur at the TeV scale
- Explain charge-quantization → Semi-simple embedding in the UV [i.e. no U(1) groups in the UV]

New Frontiers in Lepton Flavor – May 2023

Flavor hierarchies from gauge non-universality [a brief detour]

I. $U(2)^n$ flavor symmetry as accidental symmetry of the gauge sector.

• Classify the allowed Yukawa structures under a <u>*flavor-deconstruction*</u> of three basic factors characterizing the SM fermions and the EW gauge group: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

 $\overline{\psi}_L \mathrel{Y} \psi_R \mathrel{H}$

Deconstructing <u>any pair of the three</u> (or all of them) leads to the desired U(2)ⁿ flavor symmetry → <u>four basic options</u>

New Frontiers in Lepton Flavor – May 2023

Flavor hierarchies from gauge non-universality [a brief detour]

- II. New states should preserve Higgs-mass stability \rightarrow NP coupled to 3rd generation should occur at the TeV scale
- III. Explain charge-quantization \rightarrow Semi-simple embedding in the UV

Semi-simple embeddings of the SM have been classified and there are very few possibilities, all featuring one of the possible 3 basic options:

• SU(4)×SU(2)×SU(2) [Pati & Salam '74]

- SU(5) [Georgi & Glashow, '74]
- SO(10) [Georgi '75, Fritzsch & Minkowski '75]

Allanach, Gripaios, Tooby-Smith '23

Proton stability \rightarrow only the Pati-Salam option is possible at low scales

$$SU(3)_{c} \times U(1)_{B-L} \hookrightarrow SU(4) \sim \begin{bmatrix} SU(3)_{c} & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & LQ \\ \hline LQ & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 0 \\ \hline 0 & -1 \end{bmatrix}$$

New Frontiers in Lepton Flavor – May 2023

Flavor hierarchies from gauge non-universality [a brief detour]

I. + II. + III. : four basic options:

TeV-scale gauge group: $G_U \times G_3 \times H_{12}$			
	G_U	G_3	H_{12}
1	$\mathrm{SU}(2)_L$	${ m SU}(4)^{[3]} imes { m SU}(2)^{[3]}_R$	$SU(3)^{[12]} \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_{R}$
2	$\mathrm{SU}(2)_R$	$SU(4)^{[3]} \times SU(2)^{[3]}_L$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L}$
3	SU(4)	$\mathrm{SU}(2)_L^{[3]} \times \mathrm{SU}(2)_R^{[3]}$	$SU(2)_L^{[12]} \times U(1)_R^{[12]}$
4	Ø	$SU(4)^{[3]} \times SU(2)^{[3]}_L \times SU(2)^{[3]}_R$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_R$
UV completio			
L			→ @ higher E
Higgs & 3 rd gen. fields			★ +

small impact on δm_h

Higgs & 3^{ra} gen. fields charged only under these groups

Flavor hierarchies from gauge non-universality [a brief detour]

I. + II. + III. + general pheno bounds: two viable TeV-scale options:

General feature:

SU(4) group acting on the 3rd family, with low-energy breaking scale to avoid fine-tuning on the Higgs mass:

$$\delta m_h^2/m_h^2 < 1 \rightarrow \Lambda_U = M_U/g_U \lesssim 5 \text{ TeV}$$
 Davighi & G.I. '23

Using only general naturalness arguments (on both flavor & Higgs sectors) we are led to the hypothesis of a low-scale flavor non-universal LQ

The B-physics anomalies

 $R_K \ \mathrm{low}$ - $q^2 \ R_K \ \mathrm{central}$ - $q^2 \ R_{K^*} \ \mathrm{low}$ - $q^2 \ R_{K^*} \ \mathrm{central}$ - q^2

The B-physics anomalies

From 2013 results in (various) semi-leptonic B decays started to exhibit tensions with the SM predictions. Several exclusive channels are involved, but they are all sensitive only to the following two classes of partonic transitions:

 $b \rightarrow c lv$ (Charged Currents) $b \rightarrow s l^+l^-$ (Neutral Currents)

The anomalies can be grouped into 3 categories:

(I.) LFU anomaly in CC [
$$\tau$$
 vs. (μ , e)]

II.)
$$\Delta C_9$$
 (*lepton-universal*) anomaly in NC modes

III.) LFU anomaly in NC [
$$\mu$$
 vs. e] & BR(B_s $\rightarrow \mu\mu$)

$$b \rightarrow c lv$$

 $b \rightarrow s l^+ l^-$

LFU = Lepton Flavor Universality = <u>accidental symmetry</u> of the SM Lagrangian

The B-physics anomalies

- 3.0σ excess over SM
- <u>Compete with SM (a) tree-level</u> \rightarrow *low scale of NP*

The B-physics anomalies

) ΔC_9 (*lepton-universal*) anomaly in NC modes

$$\mathcal{O}_9^\ell = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$$

- Possible contamination from SM longdistance (*charming penguins*)
- All attempts to <u>compute</u> the effect agree on $\sim 3\sigma$ deviation from SM
- Compete with SM @ loop-level

Possible explanation connected to CC (*hence 3rd family LFU violation*):

The B-physics anomalies

) ΔC_9 (*lepton-universal*) anomaly in NC modes

$$\mathcal{O}_9^\ell = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$$

- Possible contamination from SM longdistance (*charming penguins*)
- All attempts to <u>compute</u> the effect agree on $\sim 3\sigma$ deviation from SM
- Compete with SM @ loop-level

Possible explanation connected to CC (*hence 3rd family LFU violation*):

 2σ consistent indication from b → s l^+l^- (*semi-inlcusive*) at high q2 GI, Poloski, Tinari '23

The B-physics anomalies

(III) LFU anomaly in NC [μ vs. e] & BR(B_s $\rightarrow \mu\mu$)

- Clean SM predictions (*LFU ratios* + no long-distance in $B_s \rightarrow \mu\mu$)
- Highest significance till summer 2022

The B-physics anomalies

III) LFU anomaly in NC & BR(
$$B_s \rightarrow \mu\mu$$
)

- Clean SM predictions (*LFU ratios* + no long-distance in $B_s \rightarrow \mu\mu$)
- Highest significance till summer 2022

N.B.: While the overall loss of significance is high, the overall implications for the class of NP models I advocate, are modest

The B-physics anomalies

The B-physics anomalies

New Frontiers in Lepton Flavor - May 2023

Leptoquarks & 4321

<u>Leptoquarks & 4321</u>

χ

 Ψ_{3L}

Even in more ambitious UV models, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow <u>new heavy mediators</u> [G' & Z']

A key role is played by at least one family of \rightarrow <u>vector-like fermions</u> (= fermions with both chiralities having same gauge quantum numbers) that mix with the 3 families of chiral fermions

 $\rightarrow LQ [U_1] + Z' + G'$

 $SU(4)^{[3]} \times SU(3)^{[12]} \times SU(2)_L \times U(1)'$

SM

 $\Psi_3 \qquad \Psi_{1,2}$

Leptoquarks & 4321

Even in more ambitious UV models, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow new heavy mediators [G' & Z']

A key role is played by at least one family of \rightarrow <u>vector-like fermions</u> (= fermions with both chiralities having same gauge quantum numbers) that mix with the 3 families of chiral fermions

Cornella, Faroughi, Fuentes-Martin, GI, Neubert, '21

New Frontiers in Lepton Flavor – May 2023

Aurelio Juste [Moriond EW'23]

New Frontiers in Lepton Flavor – May 2023

• <u>Leptoquarks & 4321: implications</u> I The U₁ leptoquark at high energies:

> Singer Pair Nonces. Mul S2023) 3 Updated preferred region by $b \rightarrow c$ g_U $\mathbf{2}$ low-energy data Aebischer et al. '22 Relevant NLO QCD corrections $|\beta_R| = 0$ Haisch, Schnell, Schulte '22 $\left(\right)$ 2000 1000 3000 4000 5000 M_U [GeV]

II Rare decays of b and τ

Leptoquarks & 4321: implications

III The vector-like fermions in low-energy observables

Conclusions

- Flavor physics represents one the most intriguing aspects of the SM and, at the same time, a great opportunity to investigate the nature of physics beyond the SM.
- The idea of a *multi-scale construction at the origin of the flavor hierarchies* has several appealing aspects. Key observation: non-universal gauge interactions at the TeV scale, involving mainly the 3rd family, offer a new way to look at the EW hierarchy problem (and the absence of direct signals of NP so far).
- The model-building efforts along this direction, triggered by the B anomalies, are still very motivated and <u>mildly affected by the recent change in low-energy data.</u>
- If these ideas corrects, <u>new non-standard effects should emerge soon</u> both at low and at high energies (→ very interesting opportunities for run-3...).

New Frontiers in Lepton Flavor – May 2023

Leptoquarks & 4321: UV completions

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding (a variation of the) Pati-Salam gauge group into an extra-dimensional construction:

Flavor \leftrightarrow special position (topological defect) in an extra (compact) space-like dimension

Dvali & Shifman, '00

Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies

Bordone, Cornella, GI, Javier-Fuentes '17

- * Anarchic neutrino masses via inverse see-saw mechanism Fuentes-Martin, GI, Pages, Stefanek '22
- * "Holographic" Higgs from appropriate choice of bulk/brane gauge symm. $[G_{bulk-23} = SU(4)_3 \times SU(3)_{1,2} \times U(1) \times SO(5)]$ $G_{IR} = SU(3)_c \times U(1)_{B-I} \times SO(4)$
- → Light Higgs as pseudo Goldstone Agashe, Contino, Pomarol '05

Fuentes-Martin, Stangl '20 Fuentes-Martin, GI, Lizana, Selimovic, Stefanek '22

Leptoquarks & 4321: implications

IV The other heavy vectors of 4321 (*more model dependent*)

V

Leptoquarks & 4321: implications

The vector-like fermions

Additional production via heavy Z' exchange (model-dependent):

N.B.: the two amplitudes interfere (*for same initial & final state*) possibly giving rise to sizable enhancements

