

High pt searches at ATLAS and CMS

New Frontiers in Lepton Flavour, Pisa May 2023

Prof. Adrian Bevan on behalf of the ATLAS & CMS collaborations

a.j.bevan@qmul.ac.uk

Outline

- Motivation
- The Large Hadron Collider (LHC)
- GPDs: ATLAS and CMS
- Indirect searches:
 - Higgs couplings to fermions
 - CP violation searches
- Direct searches:
- Summary

Motivation

- Indirect searches (e.g. CP violation) at high pt complement low energy CP studies and give new routes to answering fundamental questions in particle physics
- High pt searches offer direct means to observe physics beyond the Standard Model (SM)
- Theory motivations can date back decades: e.g:
 - Higgs Yukawa couplings to fermions linked to the CKM matrix via diagonalisation of the mass matrix
 - New types of CP violation searches target understanding the origins of the matter-antimatter asymmetry of the universe
 - Access to high energy via the LHC and HL-LHC upgrade allow for direct searches for new types of coupling (i.e. particles)

The Large Hadron Collider (LHC)

- pp collider at CERN on the Swiss-French border
- Superconducting magnets targeting $\sqrt{s}=14 TeV$ Taking data now during Run 3

The LHC

- Results shown use data from Run 1+2
- Run 3 in progress

High Luminosity upgrade start up to follow long shutdown 3

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

ORCID-0000-0002-4105-9629

Queen Mary

GPDs: ATLAS and CMS

- Designed for a wide range of physics, with tracking systems, calorimeters and trigger systems;
- Magnet systems allow 4-vector reconstruction of charged particles

GPDs: ATLAS and CMS

• Run 3 data taking performance similar to run 2

GPDs: ATLAS and CMS

Run 3 data taking performance similar to run 2

Indirect searches

Higgs couplings and two example of high pt CP violation searches

Other high pt searches, including study of b CP asymmetries using semi-leptonic top decays exist; but not covered here.

Couplings to fermions

 The CKM matrix is derived from fermion mass diagonalisation in the SM

$$U'M'U'^{\dagger} = D' = \operatorname{diag}\left(\frac{m_d}{m_b}, \frac{m_s}{m_b}, 1\right)$$
$$UMU^{\dagger} = D = \operatorname{diag}\left(\frac{m_{\mu}}{m_t}, \frac{m_c}{m_t}, 1\right),$$

$$V_{CKM} = UU'^{\dagger}$$

Queen Marv

University of London

 Couplings deviating from the SM would have implications for the for the CKM picture

ORCID-0000-0002-4105-9629

For ATLAS results see: ATLAS Collaboration, Nature 607, pages 52-59 (2022)

CP violation

- In the 1980's new CP violation tests were being explored
- An important paper stood out among others

NOTES ON THE OBSERVABILITY OF *CP* VIOLATIONS IN B DECAYS

I.I. BIGI

Institut für Theor. Physik der RWTH Aachen, D-5100 Aachen, FR Germany

A.I. SANDA¹

Rockefeller University, New York 10021, USA

Received 16 June 1981

We describe a general method of exposing CP violations in on-shell transitions of B mesons. Such CP asymmetries can reach values of the order of up to 10% within the Kobayashi-Maskawa model for plausible values of the model parameters. Our discussion focuses on those (mainly non-leptonic) decay modes which carry the promise of exhibiting clean and relatively large CP asymmetries at the expense of a reduction in counting rates. Accordingly we address the complexities encountered when performing CP tests with a high statistics B meson factory like the Z^0 (and a toponium) resonance.

Nuclear Physics B193 (1981) 85-108

- CKM, superweak and Higgs multiplet theories could all give rise to sources of CP violation.
 - What description was correct?
 - How do we test that?
- Superweak ruled out by ε'
- B Factory consistent with CKM picture.
- What about Higgs multiplets?

CP violation: ttH and tH searches

• SM Higgs is CP even

CMS

• Presence of a CP odd component in t-H coupling would constitute CP violation (and more than one Higgs)

•
$$\kappa_t, \overline{\kappa}_t$$
 are CP even / odd couplings

•
$$\psi's$$
 are Dirac spinors

- Introduce a mixing angle α : $\cos \alpha / \sin \alpha$ describe CP even/odd terms
- $\alpha = 0^{\circ}, 180^{\circ}$ for a purely CP even state
- $\alpha = 90^{\circ}$ for a purely CP odd state

 $\mathcal{L}_{t\bar{t}H} = \frac{m_t}{\tau} \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t H$

otherwise the state is mixed

CP violation searches e.g ttH and tHq, tHW

- Trigger on multi (1, 2, 3) lepton final states
- Reconstruct Higgs via WW, ZZ or $\tau^+\tau^-$ in leptonic or hadronic decay modes
- Multivariate discriminator for background suppression
- Reducible backgrounds:

- mainly from $t\overline{t}$ events
- $t\bar{t}\gamma$ leads to photon conversion background
- leptonic charge flipping from events with both tops decaying semileptonically (issue for electron mode)
- Irreducible backgrounds from rare processes also considered
- Additional discriminator for CP-odd/even determination

CMS result (https://arxiv.org/abs/2208.02686)

CP violation searches e.g ttH and tHq, tHW

138 /fb of data used

- Result obtained compatible with the SM
- No significant CP odd component found

CMS result (https://arxiv.org/abs/2208.02686)

CP violation searches e.g ttH and tHq, tHW

• Likewise combination (with previous CMS results) is compatible with the SM 138 fb⁻¹ (13 TeV)

Parameter	68% CL	95% CL
κ _t	(0.96, 1.16)	(0.86, 1.26)
$\widetilde{\kappa}_{ ext{t}}$	(-0.86, 0.85)	(-1.07, 1.07)

(also see ATLAS result detailed in <u>https://arxiv.org/abs/2004.04545</u>)

ORCID-0000-0002-4105-9629

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

 Same motivation as for the previous example, this time looking for CP violation in the τ-H coupling

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\upsilon} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_5 \tau) H$$

- $\phi_{ au}$ is the mixing angle
- $\cos \phi_{\tau}$, $\sin \phi_{\tau}$ are CP even/odd terms
- v is the Higgs VEV
- κ_{τ} coupling strength
- $\alpha = 0^{\circ}$ for a purely CP even state
- $\alpha = \pm 90^{\circ}$ for a purely CP odd state
- otherwise the state is mixed

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

- Reconstruct acoplanarity ϕ^*_{CP} , defined for different final states as

 φ_{CP}^*

 π^{-}

- states of the τ^{\pm} in lephad and hadhad final states
 - **Boost into the Zero Momentum** Frame of the visible decay

Use leptonic and hadronic final

- Use momentum vectors and impact parameter $n^{*\pm}$ to define the planes
- $\phi_{CP}^* = 180^\circ$ for CP even
- $\phi_{CP}^* = 0^\circ, 360^\circ \text{ for CP odd}$
- E_+ is the τ^{\pm} energy
- $b(E_+)$ is a spectral function describing the spin analysing power

• Sensitive to ϕ_{τ} via rate as:

Queen Mary

University of London

$$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$$

ORCID-0000-0002-4105-9629

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

- Define 4 signal regions for VBF and boost categories of event with common selection criteria (resolved vs boosted jets)
- and additional criteria for the lephad and hadhad final selections

VBF	Boost	$ \begin{array}{c} \underbrace{\textbf{ATLAS}}_{\text{US}} = \underbrace{\textbf{Data}}_{\text{US}} \begin{bmatrix} \textbf{H} \rightarrow \tau \tau \text{ (best-fit)} \\ \textbf{H} \rightarrow \tau \tau \text{ (best-fit)} \\ \textbf{Vs} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \\ \hline \textbf{Misidentified } \tau \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau \tau (\phi_{\tau} = 90^{\circ}) \\ \hline \textbf{H} \rightarrow \tau (\phi$	$ \begin{array}{c} \begin{array}{c} \bullet \\ \bullet $
$p_{\rm T}^{j_2} > 30 \text{ GeV}$ $m_{jj} > 400 \text{ GeV}$ $ \Delta \eta_{jj} > 3.0$ $\eta_{j_1} \cdot \eta_{j_2} < 0$ Central τ -leptons	Not VBF $p_{\rm T}^{\tau\tau} > 100 \text{ GeV}$	10 ² Boost_0 Boost_1 VBF_0 VBF_1 10 ² Boost_0 Boost_1 VBF_0 VBF_1 10 ² Boost_1 VBF_0 VBF_1	10
Signal region (110	$< m_{\tau\tau}^{\rm MMC} < 150 {\rm GeV}$		
VBF_1 VBF_0	Boost_1 Boost_0		
BDT(VBF) > 0 BDT(VBF) < 0	$\begin{vmatrix} \Delta R_{\tau\tau} < 1.5 \text{ and} \\ p_{\mathrm{T}}^{\tau\tau} > 140 \text{ GeV} \end{vmatrix} \begin{vmatrix} \Delta R_{\tau\tau} > 1.5 \text{ or} \\ p_{\mathrm{T}}^{\tau\tau} < 140 \text{ GeV} \end{vmatrix}$		
$Z \rightarrow \tau \tau$ control regions	$m_{\tau\tau}^{\rm MMC} < 110 {\rm GeV}$		
VBF_1 Z CR VBF_0 Z CR	Boost_1 Z CR Boost_0 Z CR	$0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 15 \xrightarrow{[]{}} 20 \xrightarrow{[]{}} 25 \xrightarrow{[]{}} 30 \xrightarrow{[]{}} 0 \xrightarrow{[]{}} 10 \xrightarrow{[]{}} 10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(a) $\tau_{\text{lep}} \tau_{\text{had}}$ High SR

(b) $\tau_{had} \tau_{had}$ High SR

University of London

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

- Signal strength and mixing phase compatible with SM
 - i.e. Signal strength ($\mu_{\tau\tau}$) and ϕ_{τ} SM-like CP odd scenario is disfavoured at 3.4 σ

ORCID-0000-0002-4105-9629

University of London

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

- Signal strength and mixing phase compatible with SM
 - i.e. Signal strength ($\mu_{\tau\tau}$) and ϕ_{τ} SM-like CP odd scenario is disfavoured at 3.4 σ

ORCID-0000-0002-4105-9629

Direct searches

Searching directly for new particles in the data that don't fit the Standard Model^(*)

Show only a few examples of analyses in this area from ATLAS and CMS

(*)The LHC has discovered many new particles e.g. XYZ states and pentaquarks, those are beyond the scope of this talk

S	ATLAS Heavy P Status: July 2022	article	Searc	hes*	⁻ - 95% CL	Upper Exclusion Limits	ATI $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$	LAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$	
	Model	<i>ℓ</i> ,γ	Jets† I	E <mark>miss</mark> ∫-	$\mathcal{L} dt[fb^{-1}]$	Limit	J	Reference	
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow \ell \nu qc$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2\gamma \\ - \\ 2\gamma \\ multi-chann \\ \eta \ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ -2 \ j \\ \geq 3 \ j \\ - \\ el \\ \geq 1 \ b, \geq 1 \ J/2j \\ \geq 2 \ b, \geq 3 \ j \end{array}$	Yes Yes Yes Yes	139 Mp 36.7 Ms 139 Mth 3.6 Mth 139 GKK mass 36.1 GKK mass 36.1 gKK mass 36.1 KK mass 36.1 KK mass	4.5 Te 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678	Huge industry of searches for new
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to tb \\ \operatorname{HVT} W' \to WZ \to \ell\nu q \mod tr \\ \operatorname{HVT} W' \to WZ \to \ell\nu \ell'\ell' \operatorname{max} \end{array}$	2 e, μ 2 τ - 0 e, μ 1 e, μ 1 τ - del B 1 e, μ odel C 3 e, μ	2 b ≥1 b, ≥2 J ≥1 b, ≥1 J 2 j / 1 J 2 j (VBF)	- Yes Yes Yes - Yes Yes	139 Z' mass 36.1 Z' mass 36.1 Z' mass 139 Z' mass 139 W' mass	5.1 2.42 TeV 2.1 TeV 4.1 TeV 6 5.0 T 4.4 TeV 4.3 TeV 340 GeV	TeV .0 TeV FeV $g_V = 3$ $g_V C_H = 1, g_f = 0$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005	experiments
	HVT $W' \rightarrow WH \rightarrow \ell \nu bb \mod HVT Z' \rightarrow ZH \rightarrow \ell \ell / \nu \nu bb \mod LRSM W_R \rightarrow \mu N_R$	del Β 1 <i>e</i> , μ odel Β 0,2 <i>e</i> , μ 2 μ	1-2 b, 1-0 j 1-2 b, 1-0 j 1 J	Yes Yes –	139 W' mass 139 Z' mass 80 W _R mass	3.3 TeV 3.2 TeV 5.0 T	$g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	2207.00230 2207.00230 1904.12679	Covers exolic and
C	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 Λ 139 Λ 139 Λ 139 Λ 36.1 Λ	1.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c c} \hline & \mathbf{21.8 \ TeV} & \eta_{i,L} \\ \hline & \mathbf{35.8 \ TeV} \\ g_* = 1 \\ C_{4t} = 4\pi \end{array} \qquad \eta_{L}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305	SUST searches
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac D Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ M) 0 e, μ, τ, γ DM) 0 e, μ a multi-chann	1 – 4 j 1 – 4 j 2 b el	Yes Yes Yes	139 M _{med} 139 M _{med} 139 M _{med} 139 M _{med}	2.1 TeV 376 GeV 560 GeV	$\begin{array}{l} g_q{=}0.25, \ g_{\chi}{=}1, \ m(\chi){=}1 \ {\rm GeV} \\ g_q{=}1, \ g_{\chi}{=}1, \ m(\chi){=}1 \ {\rm GeV} \\ \tan\beta{=}1, \ g_Z{=}0.8, \ m(\chi){=}100 \ {\rm GeV} \\ \tan\beta{=}1, \ g_\chi{=}1, \ m(\chi){=}10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 / 2108.13391 ATLAS-CONF-2021-036	Using a better
TQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 0 e, \mu, \ge 1 \tau 1 \tau$	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 2 j, \geq 2 b \\ \tau \geq 1 j, \geq 1 b \\ \tau 0 - 2 j, 2 b \\ 2 b \end{array} $	Yes Yes Yes – Yes Yes	139 LQ mass 139 LQ mass 139 LQ" mass 139 LQ ¹ mass 139 LQ ¹ mass 139 LQ ¹ mass 139 LQ ³ mass 139 LQ ³ mass 139 LQ ³ mass 139 LQ ³ mass	1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.43 TeV 1.26 TeV 1.77 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{u}\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{u}\rightarrow t\nu)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow b\nu)=1\\ \mathcal{B}(\mathrm{LQ}_{3}^{d}\rightarrow b\tau)=0.5, \ \mathrm{Y-M} \ \mathrm{coupl} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665	the detectors to push exploration
Vector-like	VLQ $TT \rightarrow Zt + X$ VLQ $BB \rightarrow Wt/Zb + X$ VLQ $T_{5/3}T_{5/3}T_{5/3} \rightarrow Wt +$ VLQ $T \rightarrow Ht/Zt$ VLQ $Y \rightarrow Wb$ VLQ $B \rightarrow Hb$ VLQ $T' \rightarrow Z\tau/H\tau$	$\begin{array}{c} 2e/2\mu/\geq 3e,\\ \text{multi-chann}\\ X 2(SS)/\geq 3 e,\\ 1 e, \mu\\ 1 e, \mu\\ 0 e, \mu\\ \text{multi-chann} \end{array}$	$\begin{array}{ll} \mu \geq \! 1 \mathrm{b}, \geq \! 1 \mathrm{j} \\ \mathrm{el} \\ \mu \geq \! 1 \mathrm{b}, \geq \! 1 \mathrm{j} \\ \geq \! 1 \mathrm{b}, \geq \! 3 \mathrm{j} \\ \geq \! 1 \mathrm{b}, \geq \! 1 \mathrm{j} \\ \geq \! 2 \mathrm{b}, \geq \! 1 \mathrm{j}, \geq \! 1 \mathrm{J} \\ \mathrm{el} & \geq \! 1 \mathrm{j} \end{array}$	- Yes Yes - Yes	139 T mass 36.1 B mass 36.1 T _{5/3} mass 139 T mass 36.1 Y mass 36.1 Y mass 139 T mass	1.4 TeV 1.34 TeV 1.64 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV 898 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) =$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	ATLAS-CONF-2021-024 1808.02343 1 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044	into more challenging areas
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	1γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 q* mass 36.7 q* mass 139 b* mass 20.3 t* mass 20.3 y* mass	5.3 3.2 TeV 3.0 TeV 1.6 TeV	6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ TeV only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921	of analysis e.g. semi-visible jets
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, μ 2 μ 2,3,4 e, μ (S 2,3,4 e, μ (S 3 e, μ , τ - - - - - - - - - - - - -	≥2 j 2 j S) various S) – – –	Yes - Yes - - - -	139 N ⁰ mass 36.1 N _R mass 139 H ^{±±} mass 139 H ^{±±} mass 20.3 H ^{±±} mass 139 multi-charged 34.4 monopole mass	910 GeV 350 GeV 1.08 TeV 400 GeV s 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = \\ \text{DY production}, q = 5e \\ \text{DY production}, g = 1g_D, \text{spin 1} \end{split}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130	-
*	$\sqrt{s} = 8 \text{ TeV}$	partial data	full dat	ta	10	⁻¹ 1	¹⁰ Mass scale [Te	V]	Adrian Bevan 23

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Overview of CMS EXO results

Huge industry of searches for new particles by both experiments

Covers exotic and **SUSY** searches

Using a better understanding of the detectors to push exploration into more challenging areas of analysis e.g. semi-visible jets

ATLAS Preliminary $\sqrt{s} = 13$ TeV

Huge industry of searches for new particles by both experiments

Covers exotic and SUSY searches

Using a better understanding of the detectors to push exploration into more challenging areas of analysis e.g. semi-visible jets

ATLAS SUSY Searches* - 95% CL Lower Limits March 2023

IVI	arch 2023					$\sqrt{s} = 1$
	Model	Signatu	re .	∫ <i>L dt</i> [fb ⁻	Mass limit	Reference
S	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} \\ { m mono-jet} & 1-3 \ { m jets} \end{array}$	E_T^{miss} E_T^{miss}	139 139	\bar{q} [1x, 8x Degen.] 1.0 1.85 $m(\tilde{\xi}_1^0) < 400 \text{ GeV}$ \bar{q} $(3x \text{ Degen.})$ $(3y) = (40) \text{ GeV}$ $m(q) = m(q^2) = 5 \text{ GeV}$ $m(q) = 5 \text{ GeV}$ m(q) = 5 \text{ GeV}	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i> 2-6 jets	$E_T^{\rm miss}$	139	ğ 2.3 m(𝔅 ¹)=0 GeV ğ Forbidden 1.15-1.95 m(𝔅 ¹)=1000 GeV	2010.14293 2010.14293
sive Se	$\widetilde{g}\widetilde{g}, \widetilde{g} ightarrow q \overline{q} W \widetilde{\chi}_1^0$ $\widetilde{g}\widetilde{g}, \widetilde{g} ightarrow q \overline{q}(\ell \ell) \widetilde{\chi}_1^0$ $\widetilde{g}\widetilde{g}, \widetilde{g} ightarrow q \overline{q} (\ell \ell) \widetilde{\chi}_1^0$	1 e, μ 2-6 jets $ee, \mu\mu$ 2 jets 0 e, μ 7-11 jets	E_T^{miss} E_T^{miss}	139 139 139	\tilde{s} 2.2 $m(\tilde{x}_1^0) < 600 \text{ GeV}$ \tilde{s} 2.2 $m(\tilde{x}_1^0) < 700 \text{ GeV}$ \tilde{s} 1.97 $m(\tilde{x}_1^0) < 600 \text{ GeV}$	2101.01629 2204.13072 2008.06032
Inclu	$\tilde{g}\tilde{g}, \tilde{g} \to t\tilde{t}\tilde{\chi}_1^0$	SS e, μ 6 jets 0-1 e, μ 3 b	E_T^{miss}	139 139	\$\tilde{x}\$ 1.15 m(\$\tilde{x})=200 GeV \$\tilde{x}\$ 2.45 m(\$\tilde{x}_0^1)<500 GeV	1909.08457 2211.08028
	~ ~	SS e,µ 6 jets		139	ğ 1.25 m(ĝ)-m(k ₁)=300 GeV	1909.08457
	b_1b_1	$0 e, \mu$ 2 b	E_T^{miss}	139	$\begin{array}{c c} b_1 & m(k_1^{\circ}) < 400 \text{GeV} \\ \hline b_1 & 0.68 & 10 \text{GeV} < \Delta m(b_1 X_1^{\circ}) < 20 \text{GeV} \end{array}$	2101.12527 2101.12527
larks ction	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$ \begin{array}{cccc} 0 e, \mu & 6 b \\ 2 \tau & 2 b \end{array} $	E_T^{miss} E_T^{miss}	139 139	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1908.03122 2103.08189
n. squ produ	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	E_T^{miss} E_T^{miss}	139 139	\vec{t}_1 1.25 $m(\vec{k}_1^0)=1 \text{ GeV}$ \vec{t}_1 Forbidden 0.65 $m(\vec{k}_1^0)=500 \text{ GeV}$	2004.14060, 2012.03799 2012.03799
3 rd gel	$ \begin{split} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 &\rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0 \end{split} $	1-2 τ 2 jets/1 b 0 e, μ 2 c 0 e, μ mono-iet	E_T^{miss} E_T^{miss} E_T^{miss}	139 36.1 139	τ̄₁ Forbidden 1.4 m(τ̄₁)=800 GeV τ̄ 0.85 m(t̄₁)=00 GeV 0.90 τ̄ 0.55 m(t̄₁)=5 GeV 0.90	2108.07665 1805.01649 2102.10874
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$ $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$1-2 e, \mu$ $1-4 b$ $3 e, \mu$ $1 b$	E_T^{miss} E_T^{miss}	139 139	\tilde{l}_1 0.067-1.18 $m(\tilde{k}_2^0)=500 \text{ GeV}$ \tilde{l}_2 Forbidden 0.86 $m(\tilde{k}_2^0)=360 \text{ GeV}$	2006.05880
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu > 1$ jet	E ^{miss} E ^{miss}	139 139	χ^{\pm}/χ^{0}_{2} 0.905 0.906 $m(\chi^{0}) = 0$ Gaussian $m(\chi^{0}) = 0$ (mono-bino) $m(\chi^{0}) = 0$ (mono-bino) $m(\chi^{0}) = 0$ (mono-bino)	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via <i>WW</i> $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i> $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$ via $\tilde{\chi}_2$ / $\tilde{\chi}_2$	$2 e, \mu$ Multiple $\ell/jets$	E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139	$\tilde{\chi}_1^{\pm}$ 0.42 $m(\tilde{\chi}_1^0) = 0.60$ $m(\tilde{\chi}_1^0) = 0.60$, which will be the $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ Forbidden $m(\tilde{\chi}_1^0) = 0.60$, which be the $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ Forbidden $m(\tilde{\chi}_1^0) = 0.60$, which be the $\tilde{\chi}_1^{\pm}$ $m(\tilde{\chi}_1^0) = 0.60$ $m(\tilde{\chi}_1$	1908.08215 2004.10894, 2108.07586 1908.08215
EW direct	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_1^0$ $\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^0$	2τ $2e,\mu$ 0 jets	E_T^{miss} E_T^{miss}	139 139	$\tilde{t} = \begin{bmatrix} \tilde{t}_{L}, \tilde{t}_{R,L} \end{bmatrix} \begin{array}{c} 0.16 - 0.3 \\ 0.12 - 0.39 \\ \tilde{t} = \begin{bmatrix} \tilde{t}_{L}, \tilde{t}_{R,L} \end{bmatrix} \begin{array}{c} 0.16 - 0.3 \\ 0.7 \\ \tilde{t} = \begin{bmatrix} \tilde{t}_{L}, \tilde{t}_{R,L} \end{bmatrix} \end{array} $	1911.06660 1908.08215
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$\begin{array}{ll} ee, \mu\mu & \geq 1 \text{ jet} \\ 0 \ e, \mu & \geq 3 \ b \\ 4 \ e, \mu & 0 \ \text{jets} \end{array}$	E_T^{miss} E_T^{miss} E_T^{miss}	139 36.1 139	ℓ 0.256 m(ℓ)-m(χ_1^*)=10 GeV \tilde{H} 0.13-0.23 0.29-0.88 BR($\tilde{\chi}_1^0 \to h\tilde{\mathcal{O}})$ =1 \tilde{H} 0.55 BR($\tilde{\chi}_{\lambda}^0 \to Z\tilde{\mathcal{O}})$ =1	1911.12606 1806.04030 2103.11684
		$0 \ e, \mu \ge 2$ large je 2 $e, \mu \ge 2$ jets	ets E_T^{miss} E_T^{miss}	139 139	\tilde{H} 0.45-0.93 $BR(\tilde{X}_1^0 \to Z \tilde{G})=1$ \tilde{H} 0.77 $BR(\tilde{X}_1^0 \to A \tilde{G})=0.5$	2108.07586 2204.13072
, q	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	$E_T^{\rm miss}$	139		2201.02472 2201.02472
Long-live particles	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ $\tilde{\ell}\tilde{\ell}, \ \tilde{\ell} \rightarrow \ell \tilde{G}$	pixel dE/dx pixel dE/dx Displ. lep	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139	$ \begin{array}{c c} \tilde{g} & 2.05 \\ \tilde{g} & [\tau(\tilde{g}) = 10 \text{ ns}] & 2.2 & m(\tilde{x}_1^0) = 100 \text{ GeV} \\ \hline \tilde{e}, \tilde{\mu} & 0.7 & \tau(\tilde{\ell}) = 0.1 \text{ ns} \\ \tilde{\tau} & 0.34 & \tau(\tilde{\ell}) = 0.1 \text{ ns} \\ \hline \tau & 0.26 & 0.26 & 0.16 \\ \hline \end{array} $	2205.06013 2205.06013 2011.07812 2011.07812
	$\tilde{v}^{\pm}\tilde{v}^{\mp}/\tilde{v}^{0}$ \tilde{v}^{\pm} , z_{ℓ} , $\ell\ell\ell$	3 e u		139	$\tilde{\tau}$ 0.30 $t(t) = 10$ lis $\tilde{v}^{\pm}/\tilde{v}^{0}$ (D2/2-)-1 D2/2-11 0.625 1.05 Drive Wind	2011 10543
RPV	$\begin{array}{l} \lambda_1 \lambda_1 \lambda_1 \lambda_1 \lambda_2 \cup \lambda_{\ell\ell} \\ \tilde{\chi}_1^* \tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow WW/2\ell\ell\ell h_{\ell} \\ \tilde{\chi}_2^* \tilde{\chi}_2 \rightarrow q \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q \\ \tilde{u}, \tilde{\iota} \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s \\ \tilde{u}, \tilde{\iota} \rightarrow b \tilde{\chi}_1^*, \tilde{\chi}_1^+ \rightarrow b b s \\ \tilde{\iota}, \tilde{\iota}, \tilde{\iota} \rightarrow b c \end{array}$	$4 e, \mu \qquad 0 \text{ jets}$ $4 -5 \text{ large je}$ $Multiple$ $\geq 4b$ $2 \text{ jets } + 2$	E_T^{miss}	139 36.1 36.1 139 36.7	$\chi_1 (X_1 + D1(2t =1, D$	2103.11684 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171
	$\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow q\ell$ $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	$\begin{array}{ccc} 2 e, \mu & 2 b \\ 1 \mu & \text{DV} \\ 1-2 e, \mu & \geq 6 \text{ jets} \end{array}$		36.1 136 139	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1710.05544 2003.11956 2106.09609
*Only	a selection of the available ma	ass limits on new state	es or	1	0 ⁻¹ 1 Mass scale ITeVI	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

(SUSY)

Huge industry of searches for new particles by both experiments

Covers exotic and SUSY searches

Using a better understanding of the detectors to push exploration into more challenging areas of analysis e.g. semi-vísible jets

Direct searches: Leptoquark decay to $b\tau$

- Assumes leptoquark (LQ) pair production
- Assume decay only into the same generation
- Use $b\tau b\tau$ selection
- τ's are reconstructed into lep(tonic) and had(ronic) final states:
 - τ_{had} is seeded by jets
 - τ_{lep} is seeded by e and μ
- Backgrounds include $t\overline{t}$, single top, mis-reconstructed τ 's, Z+jets

Direct searches: Leptoquark decay to $b\tau$

- Selection focuses on 1 prong τ_{lep} and 1 and 3 prong τ_{had} events
- O(%) overall efficiency (depends on model/mass)

	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel		
e/μ selection	= 1 'signal' <i>e</i> or μ $p_{\rm T}^{e} > 25, 27 {\rm GeV}$ $p_{\rm T}^{\mu} > 21, 27 {\rm GeV}$	No 'veto' e or μ		
$ au_{ m had-vis}$ selection	$= 1 \tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100 \text{GeV}$	= 2 $\tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100, 140, 180 (20) \text{ GeV}$		
Jet selection	$p_{\mathrm{T}}^{\mathrm{jet}}$	\geq 2 jets > 45 (20) GeV 1 or 2 <i>b</i> -jets		
Additional selection	selection Selection $Opposite charge e, \mu, \tau_{had} and \tau_{had}$ $m_{\tau\tau}^{MMC} \notin 40 - 150 \text{ GeV}$ $E_{T}^{miss} > 100 \text{ GeV}$ $s_{T} > 600 \text{ GeV}$			

Direct searches: Leptoquark decay to $b\tau$

Uses parameterised NN (with LQ mass) to extract signal from background

Direct searches: Leptoquark decay to $b\tau$

Uses parameterised NN (with LQ mass) to extract signal from background

Direct searches: Leptoquark decay to $b\tau$

• No signal observed: place limits on models

	Obs. limit [GeV]	Exp. limit [GeV]
Scalar LQ	1490	1410
Vector LQ (minimal-coupling)	1690	1600
Vector LQ (Yang-Mills)	1960	1840

Direct searches: Leptoquark decay to $b\tau$

• No signal observed: place limits on models

	Obs. limit [GeV]	Exp. limit [GeV]
Scalar LQ	1490	1410
Vector LQ (minimal-coupling)	1690	1600
Vector LQ (Yang-Mills)	1960	1840

Direct searches: Long Lived Particles (LLPs)

• Wide range of theoretical possibilities examples include:

- Higgs portal model dark photon (Z_D) decay [left]
- Heavy scalar (Φ) decaying to LLPs (X) [right]
- Signature: displaced vertices from dimuons
 - Select primary vertex as hardest scattering in event (based on tracks)
 - Common displaced vertex fitted to a pair of tracks consistent with $\mu^+\mu^-$

CM₅

Direct searches: Long Lived Particles (LLPs)

• TMS muons:

CMS

- tracker + muon system
- good momentum resolution
- range limited by tracker radius
- STA muons:
 - muon system only
 - lower momentum resolution
 - works out to several meters

ORCID-0000-0002-4105-9629

• Combinations of these muons provide coverage out to 4m in transverse decay length: L_{xy}

 10^{3}

10⁴

 10^{2}

10

Direct searches: Long Lived Particles (LLPs)

No dimuon resonances found

CMS

Limits placed for different assumed intermediate particle masses e.g. Higgs portal model: $H \rightarrow H_D$ $\rightarrow Z_D Z_D \rightarrow$ $(\mu^+\mu^-)$ 97.6 fb⁻¹ (13 TeV) 97.6 fb⁻¹ (13 TeV) 10^{6} [qd] (n'n'← 10⁶ [qd] (ท่ท่₊ 95% CL upper limits: 95% CL upper limits: CMS CMS 10⁵ - Combined observed Combined observed m₁₁ = 125 GeV m₁₁ = 125 GeV - - Combined expected (median) - - Combined expected (median) 10⁴ 10^{4} $m_{Z_{r}} = 10 \text{ GeV}$ Combined expected (68% quantile) $m_{Z_{a}} = 20 \text{ GeV}$ Combined expected (68% quantile) $_{\rm D}^{\rm Z} = B(Z_{\rm D}^{\rm Z})$ 40³ $Z_{D}Z_{D}B(Z_{D}$ Combined expected (95% quantile) Combined expected (95% quantile) $B(Z_n \rightarrow \mu\mu) = 0.144$ $B(\ddot{Z}_{D} \rightarrow \mu\mu) = 0.143$ -- STA-STA expected (median) - - STA-STA expected (median) 10² 10 - - TMS-TMS expected (median) TMS-TMS expected (median) σ(H→Z_DZ STA-TMS expected (median) STA-TMS expected (median) 10 d(Ħ $B(H \rightarrow Z_{D}Z_{D}) = 1$ $B(H \rightarrow Z_{D}Z_{D}) = T$ 10-10 $B(H \rightarrow Z_D Z_D) = 0.1\%$ $B(H \rightarrow Z_p Z_p) = 0.1\%$ 10^{-2} 10^{-2} 10^{-3} $B(H \rightarrow Z_D Z_D) = 0.01\%$ 10^{-3} $B(H \rightarrow Z_D Z_D) = 0.01\%$ 10^{-4} 10^{-4} $B(H \rightarrow Z_p Z_p) = 0.001\%$ $B(H \rightarrow Z_p Z_p) = 0.001\%$

10⁵_

Cτ [cm]

10⁶

10⁻⁵

10⁻³

10⁻²

10⁻¹

 10^{-1}

 10^{2}

10

 10^{3}

10⁴

10⁻²

10⁻⁵

10⁻³

10⁶

10⁵-

Cτ (cm)

Direct searches: Long Lived Particles (LLPs)

No dimuon resonances found

CMS,

• Limits placed for different assumed intermediate particle masses e.g. Heavy scalar scenario: $\Phi \to XX \to (\mu^+\mu^-)(f\bar{f})$

Direct searches: Long Lived Particles (LLPs)

No dimuon resonances found

CMS

• Limits placed for different assumed intermediate particle masses e.g. Heavy scalar scenario: $\Phi \rightarrow XX \rightarrow (\mu^+\mu^-)(f\bar{f})$

- Sea Saw mechanism predicts right handed neutrinos
- The Left-Right Symmetric Model extension predicts a heavy right handed neutrino N_R and parters of the W and Z boson, W_R and Z_R

Lepton charge distinguishes between Dirac and Majorana neutrino structure

Analysis neglects lepton flavour mixing

 $m(W_R) > m(N_R)$

 $m(W_R) < m(N_R)$

No signal found

• Exclusion limits for the Majorana neutrino scenario set

No signal found

University of London

Exclusion limits for the Dirac neutrino scenario set

Summary

- High pt physics linked to our understanding of flavour via the Higgs
- CP violation searches using Higgs couplings complement searches performed at low energy B, D, K (ν 's) and with top
- Searches for effects beyond the SM, either directly or indirectly using high pt data have not paid dividend (yet)
- Run 3 has only just started, and with the High Luminosity upgrade construction underway, expect significant increases in data to continue the quest for new physics
- New ideas are constantly being tested, and the increase of data will ensure this trend continues through into the HL-LHC era

Additional slides

ATLAS Collaboration, Nature 607, pages 52–59 (2022)

Couplings to fermions

 The CKM matrix is derived from fermion mass diagonalisation in the SM

$$U'M'U'^{\dagger} = D' = \operatorname{diag}\left(\frac{m_d}{m_b}, \frac{m_s}{m_b}, 1\right)$$
$$UMU^{\dagger} = D = \operatorname{diag}\left(\frac{m_{\mu}}{m_t}, \frac{m_c}{m_t}, 1\right),$$

$$V_{CKM} = UU'^{\dagger}$$

 Couplings deviating from the SM would have implications for the for the CKM picture

CMS result (https://arxiv.org/abs/2208.02686)

CP violation searches e.g ttH and tHq, tHW

XGBoost used for CP determination

CMS

• Shape differences in m_{ttH} , $\Delta\eta$ and ΔR feed into CP determination

• e.g. the 2ISS + 0Th channel

Table 4: Input features for the three BDTs. A check mark (\checkmark) indicates the variable is used in a given final state, whereas a long dash (—) indicates the variable is not used in that final state.

Variable description	$2\ell SS + 0\tau_h$	$2\ell SS + 1\tau_h$	$3\ell + 0\tau_h$
p _T of jet 1	_	_	\checkmark
$p_{\rm T}$ of jet 2	_	_	\checkmark
$p_{\rm T}$ of lepton 1	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ of lepton 2	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ of lepton 3	_	_	\checkmark
$p_{\rm T}$ of τ lepton	_	\checkmark	_
η of lepton 1	\checkmark	\checkmark	_
η of lepton 2	\checkmark	\checkmark	_
η of τ lepton	_	\checkmark	_
ϕ of lepton 1	\checkmark	\checkmark	_
ϕ of lepton 2	\checkmark	\checkmark	_
ϕ of τ lepton	_	\checkmark	_
$m_{\rm T}(l_1, p_{\rm T}^{\rm miss}) + p_{\rm T}^{\rm miss}$	\checkmark	_	_
$m_{\rm T}(l_2, p_{\rm T}^{\rm miss}) + p_{\rm T}^{\rm miss}$ system	\checkmark	_	_
ΔR of lepton 1 to its closest jet	\checkmark	\checkmark	\checkmark
ΔR of lepton 2 to its closest jet	\checkmark	\checkmark	\checkmark
Invariant mass of the reconstructed tt H system $(M_{ttH} = \sum_{i} p^{lep_i} + \vec{p}_T^{miss} + \sum_{i \le k} p^{jet_i*})$	\checkmark	\checkmark	\checkmark
$\Delta \eta$ of two jets with highest b score in the laboratory frame ($\Delta \eta_{BB}$)	\checkmark	\checkmark	\checkmark
$\Delta \eta$ of the two leptons in frame of two most-likely b jets	\checkmark	\checkmark	_
$\Delta \eta$ of two jets with highest b score in the dilepton system frame	\checkmark	\checkmark	
$\Delta \eta$ of two jets with highest b score in the $\ell_1 - \ell_2$ system frame		_	\checkmark
$\Delta \eta$ of two jets with highest b score in the $\ell_1 - \ell_3$ system frame	_	_	\checkmark
$\Delta \phi$ of the two leptons in frame of two most-likely b jets		\checkmark	_
$\Delta \phi$ of two jets with highest b score in the dilepton system frame	_	\checkmark	_
Average ΔR among all jets	\checkmark	\checkmark	_
Jet multiplicity	\checkmark	\checkmark	_
p_T^{miss}	\checkmark	\checkmark	_
Azimuthal angle of $\vec{v}_{T}^{\text{miss}}$	1	\checkmark	_
Highest BDT score of jet triplet from t	\checkmark	\checkmark	_
Higgs jet tagger		\checkmark	
Angle of tt and H boson in ttH-system	_	\checkmark	_
Angle between two t in tt-frame	_	\checkmark	_
$\Delta R_{l_3-l_1} = \sqrt{(\eta_{\ell_3} - \eta_{\ell_1})^2 + (\phi_{\ell_3} - \phi_{\ell_1})^2}$	_	_	\checkmark
$\Delta R_{l_1-l_2} = \sqrt{(\eta_{\ell_1} - \eta_{\ell_2})^2 + (\phi_{\ell_1} - \phi_{\ell_2})^2}$	_	_	\checkmark
$\Delta R_{l_{n-l_{n}}} = \sqrt{(\eta_{\ell_{n}} - \eta_{\ell_{n}})^{2} + (\phi_{\ell_{n}} - \phi_{\ell_{n}})^{2}}$	_	_	\checkmark
$n_{i+1} = n_{i+2}$	_	_	1
$p_{\mathrm{T}}^{\mathrm{jet1}} + p_{\mathrm{T}}^{\mathrm{jet2}} + p_{\mathrm{T}}^{\mathrm{jet3}} + p_{\mathrm{T}}^{\mathrm{miss}}$	_	_	√
Total number of variables	19	25	16
* k = 6 (4) in the $2\ell SS + 0\tau_{\rm b}$ ($2\ell SS + 1\tau_{\rm b}$ and $3\ell + 0\tau_{\rm b}$) final state		

ORCID-0000-0002-4105-9629

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

 cos/sin dependence is used to determine the CP content of the data: Scalar is CP even (SM-like), pseudoscalar is CP odd.

Set of nuisance parameters	Impact on ϕ_{τ} [°]
Jet energy scale	3.4
Jet energy resolution	2.5
Pile-up jet tagging	0.5
Jet flavour tagging	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
Electron	0.3
Muon	0.9
$\tau_{\rm had}$ reconstruction	1.0
Misidentified $ au$	0.6
$\tau_{\rm had}$ decay mode classification	0.3
π^0 angular resolution and energy scale	0.2
Track (π^{\pm} , impact parameter)	0.7
Luminosity	0.1
Theory uncertainty in $H \rightarrow \tau \tau$ processes	1.5
Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.1
Simulated background sample statistics	1.4
Signal normalisation	1.4
Background normalisation	0.6
Total systematic uncertainty	5.2
Data sample statistics	15.6
Total	16.4

ATLAS (https://arxiv.org/abs/2212.05833 accepted by EPJC)

CP violation searches e.g $H \rightarrow \tau^+ \tau^-$

- Use different reconstruction methods to account for the missing ν when reconstructing the plane: Decay mode combination Method Fraction in all τ -lepton-p
 - 1 prong decays use impact parameter (IP) vector (directional distance between the point of closest approach of the charged particle primary track and the position of the primary vertex) and charged particle momentum
 - ρ decay use the two pion momenta
 - a_1 method use the sum of the neutral pion 4 momenta in place of the neutral pion in the ρ method
 - Some channels require combination of the IP and

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	IP	8.1%
$ au_{ m lep} au_{ m had}$	ℓ–1p1n	$IP-\rho$	18.3%
	ℓ–1pXn	IP– ρ	7.6%
	ℓ–3p0n	IP– a_1	6.9%
	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	IP– ρ	6.0%
	1p1n-1p1n	ho	6.7%
⁴ had ⁴ had	1p0n–1pXn	IP– ρ	2.5%
	1p1n–1pXn	ho	5.6%
	1p1n-3p0n	ρ – a_1	5.1%

(a) $H \rightarrow \tau^+ \tau^- \rightarrow \pi^+ \pi^- + 2\nu$

 φ_{CP}^*

Direct searches: Long Lived Particles (LLPs)

- Use either full tracking or muon system only for track reconstruction (TMS and STA track combinations)
- di-muon trigger efficiency strongly depends on impact parameter d₀
- Cosmic rays used to validate Monte Carlo expectations good agreement gives confidence that this type of analysis can be done

Leptons and jets categorised for resolved and boosted studies

	Resolved				Boosted			
		Baseline	Fake estimation	Baseline	Leading	Fake estimation		
	$ \eta $		(0, 1.37] or [1.52,	2.47]	.47]			
	$p_{\rm T}~({\rm GeV})$:	> 25	> 25	> 2	200		
Electrons	Quality	Tight	Loose	Medium	Tig	ght		
	Isolation	Loose	Fail Loose or Tight	Loose	HighPtCaloOnly	Loose but fail		
						HighPtCaloOnly		
		Baseline	Fake estimation	Baseline	Leading			
	$p_{\rm T}$ (GeV)		> 25	> 28	> 200			
Muons	$ \eta $	•	< 2.5			—		
	Quality	$High-p_T \text{ if } pT >$	Medium	Tight				
	Isolation	FixedCutTightTrackOnly	fail FixedCutTightTrackOnly	_	Tight			
	$p_{\rm T}$ (GeV)		> 20					
Small- <i>R</i> jet	$ \eta $		< 2.5					
	$p_{\rm T}$ (GeV)				> 200			
Large-R jet	$ \eta $		_		< 2			

• Resolved analysis targets $\Delta m = m(W_R) - m(N_R) < 4 TeV$ and breaks data down into same and opposite sign (SS/OS) selections

Variable	rSRSS2e	rSRSS2mu	rSROS2e	rSROS2mu
Number of electrons	2	0	2	0
Number of muons	0	2	0	2
Lepton charge	sam	e sign	oppos	site sign
Leading lepton $p_{\rm T}$ [GeV]		>	40	
Dilepton mass $m_{\ell\ell}$ [GeV]		> -	400	
$\Delta R_{\ell\ell}$	<	3.9		
Number of small- <i>R</i> jets with $p_{\rm T} > 100 \text{ GeV}$		≥	: 2	
Number of <i>b</i> -tagged jets			0	
Dijet mass m_{jj} [GeV]		>	110	
$h_{\rm T} \equiv p_{\rm T}(\ell_1) + p_{\rm T}(\ell_2) + p_{\rm T}(j_1) + p_{\rm T}(j_2)$ [GeV]		>	400	

- Boosted analysis targets larger Δm where the large R jet overlaps with a high p_t lepton

Region	bSR1e	bSR2e	bSR2mu
	(higher Δm)	(lower Δm)	
Number of large- <i>R</i> jets		1	
Number of electrons	1	2	0
Number of muons	0	0	2
Leading lepton $p_{\rm T}$ [GeV]		> 200	
$E_{\rm T}^{\rm miss}$ [GeV]	< 2	< 200	
$ \cos \theta $	> 0.7		
$\Delta \phi_{J,\ell_1}$		> 2.0	
$\Delta\eta_{J,\ell_1}$	< 2.0		
Dilepton $p_{\rm T}$ (GeV)			> 200
Dilepton mass $m_{\ell\ell}$ [GeV]		> 20	00
Number of <i>b</i> -tagged small- <i>R</i> jets		0	

ORCID-0000-0002-4105-9629