High-pT meets flavor

Aleks Smolkovic

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Outline

• Intro: heavy NP, SMEFT, high-mass Drell-Yan

Complementarity in EFT

Complementarity in models

Heavy NP?

- Neutrino masses?
- Dark matter?
- Hierarchy problem?
- Flavor puzzle?
- CPV beyond the SM?

1903.05062

ATLAS&CMS are pushing the high-energy frontier, challenging many NP models

Challenge: various NP models will in general impact several observables from vastly different classes

Global, model-independent approach?

SM(EFT)

SM gauge group:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3) \times U(1)_{em}$$

Field content:

$$q_i, u_i, d_i, l_i, e_i$$
 (+ H , GBs), $i = 1, 2, 3$

8 classes of operators, 2499 parameters (e.g. 1008.4884)

Concrete models will generate operators with particular structure

A. Smolkovic: High-pT meets flavor

Challenge: various SMEFT operators will impact observables from vastly different classes

For a model independent approach, study the global SMEFT likelihood

Crucially relies on RGE&matching computations 1308.2627, 1310.4838, 1312.2014, 1709.04486, 1908.05295, ...

Importance of flavor violation

hep-ph/0207036

Anarchy is highly unlikely e.g. 2005.05366, 2203.09561

Focus for remainder of the talk:

Interplay between low-energy meson decays and high-mass Drell-Yan

Why high-mass Drell-Yan?

5 flavors in the proton

Why high-mass Drell-Yan?

Many operators contribute, especially sensitive to contact interactions

A. Smolkovic: High-pT meets flavor

Sensitivity of DY to Cls

Bound saturates at bins of ~TeV

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch; 2207.10714

Selected examples in EFT and models

(not a complete review by far)

Charm Physics Confronts High-pT Lepton Tails

Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez; 2003.12421

Rare $c \rightarrow u\ell\ell$ decays

Probing LFV in Meson Decays with LHC Data

Descotes-Genon, Faroughy, Plakias, Sumensari; 2303.07521		Observable	LHC (140 fb^{-1})) HL-LHC (3 ab^{-1})	Exp. limit
$\mathcal{L}_{\text{composition rate}} = \mathcal{L}_{\text{composition rate}} = \mathcal{L}_{compos$	$\mathcal{B}(B^0 o \mu^{\pm} \tau^{\mp})$	8×10^{-4}	$1.7 imes 10^{-4}$	1.4×10^{-5}	
Comparing $pp \rightarrow \ell_i \ell_j$ (CIVIS, 140 fb ⁻¹))	$\mathbf{\mathcal{B}}(B^+ \to \pi^+ \mu^\pm \tau^\mp)$	1.1×10^{-4}	$2 imes 10^{-5}$	9.4×10^{-5}
to LFV meson decays		$\blacksquare \mathcal{B}(B_s \to K^0_S \mu^{\pm} \tau^{\mp})$	4×10^{-5}	$8 imes 10^{-6}$	_
p p q q l l f f f f f f f f f f f f f f f f		$\mathcal{B}(B^0 \to \rho \mu^{\pm} \tau^{\mp})$	$7 imes 10^{-5}$	$1.5 imes 10^{-5}$	_
		$\mathcal{B}(B_s o \mu^{\pm} \tau^{\mp})$	8×10^{-3}	1.7×10^{-3}	4.2×10^{-5}
		$\mathcal{B}(B^+ \to K^+ \mu^\pm \tau^\mp)$) 9×10^{-4}	$1.9 imes 10^{-4}$	$3.9 imes 10^{-5}$
		$\blacksquare \mathcal{B}(B^0 \to K^{*0} \mu^{\pm} \tau^{\mp})$) 4×10^{-4}	$1.0 imes 10^{-4}$	_
		$\mathcal{B}(B_s \to \phi \mu^{\pm} \tau^{\mp})$	$5 imes 10^{-4}$	$1.0 imes 10^{-4}$	_
		${\cal B}(B^0 o e^\pm au^\mp)$	1.7×10^{-3}	4×10^{-4}	2.1×10^{-5}
		$\mathcal{B}(B^+ \to \pi^+ e^\pm \tau^\mp)$	2×10^{-4}	$5 imes 10^{-5}$	9.8×10^{-5}
	aint	$\blacksquare \mathcal{B}(B_s \to K_S e^{\pm} \tau^{\mp})$	8×10^{-5}	$1.7 imes 10^{-5}$	_
		$\mathcal{B}(B^0 \to \rho e^{\pm} \tau^{\mp})$	1.4×10^{-4}	3×10^{-5}	_
	00	$\mathcal{B}(B_s \to e^{\pm} \tau^{\mp})$	1.8×10^{-2}	4×10^{-3}	7.3×10^{-4}
	luo	$\mathcal{B}(B^+ \to K^+ e^\pm \tau^\mp)$) 2×10^{-3}	4×10^{-4}	$3.9 imes 10^{-5}$
	우 -	$\blacksquare \mathcal{B}(B^0 \to K^{*0} e^{\pm} \tau^{\mp})$) 1.1×10^{-3}	$2 imes 10^{-4}$	_
See also 2002.05684		$\mathcal{B}(B_s \to \phi e^{\pm} \tau^{\mp})$	1.2×10^{-3}	$2 imes 10^{-4}$	

A. Smolkovic: High-pT meets flavor

Drell-Yan Tails Beyond the Standard Model

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch; 2207.10714

 $m_{U_1} = 2 \text{ TeV}$ 3 Combined EW $[x_1^L]^{33}$ _ -2LHC $\tau \tau + \tau \nu$ Flavor -3HiohP⁻ -0.5-1.5-1.0. 0.51. 1.5 $[x_1^L]^{23}$

Released HighPT Mathematica package (2207.10756, github.com/HighPT)

A. Smolkovic: High-pT meets flavor

See also 1609.07138

 $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

Greljo, Salko, AS, Stangl; 2212.10497

Complementarity with rare b decays

 $pp \rightarrow \ell \ell, \ell \nu$ now available in flavio <u>flav-io.github.io</u>

Data:

	$pp \to \ell \ell$	$pp \rightarrow \ell \nu$
CMS	2103.02708	2202.06075
ATLAS	2006.12946	1906.05609

Greljo, Salko, AS, Stangl; 2212.10497

 $[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_{\mu}l_l)(\bar{q}_s\gamma^{\mu}q_t)$

 $[C_{lq}^{(1)}]^{(\ell)} \equiv [C_{lq}^{(1)}]^{(e)} = [C_{lq}^{(1)}]^{(\mu)}$

Greljo, Salko, AS, Stangl; 2212.10497

LFU Z' Greljo, Salko, AS, Stangl; 2212.10497

1511.07434

ſl

e

LFU LQ^{Greljo, Salko, AS, Stangl; 2212.10497}

Triplet of scalar S_3 LQs: $S^{\alpha} \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$, LQs form a $\bar{\mathbf{3}}$ under $U(3)_l *$

Summary

- <u>Model-independent approach to heavy NP</u>
 -> tools for global analyses indispensable
- <u>Complicated data analyses can be done "once and for all"</u>
 -> reinterpretation in concrete heavy NP models possible
- Flavor responsible for the vast majority of parameters

 > interesting correlations between observables from different
 classes
- High complementarity between high-mass DY and meson decays especially in realistic flavor scenarios and concrete models

Additional slides

$b \rightarrow d, s \text{ in WET}$

Greljo, Salko, AS, Stangl; 2212.10497

$$\begin{split} O_{9}^{bq\ell\ell} &= (\bar{q}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell) \\ O_{10}^{bq\ell\ell} &= (\bar{q}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) \end{split}$$

 $B \rightarrow \pi$ FFs from 2102.07233 Also e.g. *R. Bause et al* (2209.04457), *M. Ciuchini et al* (2212.10516)

A. Smolkovic: High-pT meets flavor

LFU vs LFV in $b \rightarrow s$

Greljo, Salko, AS, Stangl; 2212.10497

$$O_{9}^{bq\ell\ell} = (\bar{q}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell) \qquad C_{9,10}^{bs\mu}$$
$$O_{10}^{bq\ell\ell} = (\bar{q}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) \qquad C_{9,10}^{bs\mu}$$

$$C_{9,10}^{bs\mu\mu} = C_{9,10}^{\text{univ.}} + \Delta C_{9,10}^{bs\mu\mu}$$
$$C_{9,10}^{bsee} = C_{9,10}^{\text{univ.}}$$

LFU tree level models

Greljo, Salko, AS, Stangl; 2212.10497

