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Introduction to the 
MEG II experiment



➢ SM extension + 𝜈 oscillations ➜ 𝑙 → 𝑙′ ✔
• But not experimentally observable: 𝑚𝜈 small ➜ BR < 10−50

➢ Beyond SM theories (SUSY-GUT) predict additional particles and interactions

• CLFV rare but enhancement up to an observable level BR ≈ 10−(14÷15)

➢ In this context the MEG experiment represents the state of the art in the 
search for the CLFV 𝜇+ → 𝑒+𝛾 decay
• Final results exploiting the full statistics collected during the 2009-2013

data taking period at Paul Scherrer Institut (PSI)
• 𝐵𝑅 𝜇+ → 𝑒+𝛾 < 4.2 × 10−13 (90% C. L. ) world best upper limit

Physics context: CLFV

CLFV in SM extension 
+ 𝜈 oscillations 

3 orders of magnitude in the 
last 35 years mainly due to 
improvements in detector 

and beam technologies
➢ Lepton Flavour Violation (LFV) processes 

experimentally observed for neutral leptons
➢ Neutrino oscillations 𝜈𝑙 → 𝜈𝑙′

➢ LFV for charged leptons (CLFV): 𝑙 → 𝑙′ ??? 
➢ If found ➜ definitive evidence of New Physics (NP)

European Physics Journal C 
(2016) 76:434 1/26
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https://link.springer.com/article/10.1140/epjc/s10052-016-4271-x
https://link.springer.com/article/10.1140/epjc/s10052-016-4271-x


➢ 𝐵𝐾𝐺𝐴𝐶𝐶 ∝ 𝑅𝜇∆𝐸𝑒∆𝑡𝑒𝛾∆𝐸𝛾
2∆𝜃𝑒𝛾

2 ➜ DOMINANT in high rate environments

➢ 𝐵𝐾𝐺𝑅𝑀𝐷 ≈ 10% × 𝐵𝐾𝐺𝐴𝐶𝐶

𝜇+ → 𝑒+𝛾 decay
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SIGNAL
BACKGROUNDS

Radiative Muon Decay (RMD)
Accidental

➢ 28 MeV/c 𝜇+ continuous beam 
stopped in a thin target              
(15° slant angle)

➢ Most intense DC muon beam in  
the world at PSI: 𝑅𝜇 ≈ 108 Hz

➢ 𝜇+ decay at rest: 2-body kinematics
➢ 𝐸𝛾 = 𝐸𝑒 = 52.8 MeV

➢ 𝜃𝑒𝛾 = 180°

➢ 𝑡𝑒𝛾 = 0 s

➢ 𝐸𝛾 < 52.8 MeV

➢ 𝐸𝑒 < 52.8 MeV
➢ 𝜃𝑒𝛾 < 180°

➢ 𝑡𝑒𝛾 = 0 s

➢ 𝐸𝛾 < 52.8 MeV

➢ 𝐸𝑒 < 52.8 MeV
➢ 𝜃𝑒𝛾 < 180°

➢ 𝑡𝑒𝛾 = flat

From RMD, 
Annihilation-In-Flight or 
bremsstrahlung

Kinematic variables
𝐸𝑒, 𝐸𝛾, 𝑡𝑒𝛾, 𝜃𝑒𝛾



The MEG II experiment

𝑬𝒆+

(𝑬𝜸, 𝒕𝜸)

𝒕𝒆+

Tag low-energy 
𝑒+ from
AIF/RMD
to reduce 
background

➢ Increasing the 𝜇+ stopping rate
➢ Improving the detectors figures of merit

• × 2 factor than MEG

Plastic scintillator tiles read out by SiPMs

SiPMs on the 𝛾 entrance face 
+ PMTs on the other faces

LYSO crystals + 
plastic scintillators

➢ Full design paper
➢ Full commissioning paper

MEG II goal
𝐵𝑅 ~ 6 × 10−14

Low-mass high-granularity single volume detector 3/26

https://link.springer.com/article/10.1140/epjc/s10052-018-5845-6
https://www.mdpi.com/2218-1997/7/12/466
https://www.mdpi.com/2073-8994/13/9/1591


MEGII experimental 
apparatus



Beam and target: why PSI?
➢ The Paul Scherrer Institute (PSI) is the largest research institute for natural and 

engineering sciences within Switzerland
➢ World-class research in 3 main subject areas: matter and material; energy and 

environment; human health
➢ World’s most powerful High Intensity Proton Accelerator (HIPA)
➢ 590 MeV/1.4 MW 𝑝 beam drives several user facilities including

• Swiss Muon Source (S𝜇S): the world's most intense continuous muon source
• Up to 𝟏𝟎𝟖 𝝁/𝐬 (1010 𝜇/swith the High Intensity Muon Beam - HIMB - upgrade)
• 6 beamlines available for experiments using muons

4/26

Experimental Hall with 
accelerator and particle 

physics experiments

Graphite target

590 MeV 
p beam 

from HIPA

➢ Up to 108 µ+/s
➢ 28 MeV/c 

surface muons
➢ Possibility to 

switch to pions 
for calibrations

@COBRA center
@collimator

Measured beam profiles

BTS to couple the beam line to the magnetic spectrometer
MEGII 

apparatus

➢ 𝟏𝟑𝟎 𝛍𝐦-thick PVT 
target at the center of 
the experiment

➢ CF support structure
➢ Parking/measuring 

positions
➢ Markers for optical 

surveys (deformation)
➢ Holes for tracking 

checks



➢ Precise measurement of the 𝒆+𝜸 time coincidence is one of the MEGII key features to suppress the dominant accidental background
➢ To meet MEG II requirements the pTC needs to measure the time of arrival of ≈ 50 𝑀𝑒𝑉 𝑒+

with 𝜎𝑡 ~ 30 𝑝𝑠 @ high rate (few MHz)
➢ The MEGII pTC is based on a new concept to overcome the MEG TC limitations

• Fast plastic scintillators
o Good 𝜎𝑡 of a single counter due to its small dimensions
o Pile-up hit rate kept under control

• High segmentation: 256 scintillating tiles × 2 modules (US-DS) instead of 15 × 2 bars
o Each 𝑒+ time is measured with many counters to significantly improve the total 𝜎𝑡
o Flexible detector layout to maximize the 𝑒+ detection efficiency and hit multiplicity

pixelated Timing Counter (pTC)

MEG 
TC

MEG II 
pTC

Double-side 
PMT readout 5/26

𝑁𝐻𝐼𝑇 ≈ 9

➢ Array of fast scintillating tiles readout by SiPM (double-side)
➢ Placed in air in the space between the CDCH and COBRA



➢ 2 semi-cylindrical super-modules mirror symmetric to each other and placed 
Up-Stream (US) and Down-Stream (DS) with respect to the 𝜇+ stopping target 
inside the COBRA spectrometer
• Full 𝑒+ angular acceptance coverage when 𝛾 points to LXe calorimeter
• 23 < 𝑧 < 116.7 𝑐𝑚, −165.8° < 𝜙 < +5.2°

➢ 256 counters per super-module
• 16 counters @ 5.5 𝑐𝑚 interval in 𝑧 and 16 counters @ 10.3° interval in 𝜙
• 45° tilt angle to be ≈ perpendicular to 𝑒+ trajectories

Design

6/26

➢ One of the 2 pTC modules with 256 counters
➢ Inter-pixel time calibration with track- (high-momentum Michel 

𝑒+ crossing several counters) and laser- (synchronous light pulses 
distributed to counters through optical fibers) based methods

➢ 18 mm-thick aluminum mechanical structure
➢ Cooling system to kept the temperature below 

20°C and optimize the SiPM performance

Series 
connection: 
lower rising 

time and 
shorter 
pulses

𝑳 ×𝑾× 𝑻 = 𝟏𝟐𝟎 × 𝟒𝟎 𝐨 𝟓𝟎 × 𝟓𝐦𝐦𝟑

35 μm Enhanced Specular 
Reflector (ESR) coating for 
internal reflections + 25 μm
Tedlar wrapping for light tightness

➢ BC-422 scintillator 
(Saint-Gobain)

➢ Coupling with optical 
cement BC-600

PCB with 6 AdvanSiD SiPMs per 
side with series connection
➢ Lower total capacitance
➢ Power supply/readout 

directly via the DAQ board



Cylindrical Drift CHamber (CDCH)

≈ 𝟏𝟗𝟏 𝐜𝐦
≈ 𝟔𝟎 𝐜𝐦

MEGII CDCH

𝐳 = 𝐞𝐧𝐝𝐩𝐥𝐚𝐭𝐞

𝒛 = 𝟎

𝒛 beam axis

Down-Stream side (DS)Up-Stream side (US)

➢ Low-mass single volume detector with high granularity filled with He:iC4H10 90:10 gas mixture
• + additives to improve the operational stability: 1.5% isopropyl alcohol + 0.5% Oxygen
• 9 concentric layers of 192 drift cells defined by 11904 wires: ΔR ≈ 8 cm active region
• Small drift cells few mm wide: occupancy of ≈1.5 MHz/cell (center) near the stopping target
• High density of sensitive elements: ×4 hits more than the MEG drift chamber (DCH)

➢ Total radiation length 1.6 × 10−3 X0: less than 2 × 10−3 𝑋0 of MEG DCH or ≈150 µm of Silicon
• MCS minimization and 𝛾 background reduction (bremsstrahlung and Annihilation-In-Flight)

➢ Extremely high wires density (12 wires/cm2) → the classical technique with wires anchored to endplates with feedthroughs is hard to implement
• CDCH is the first drift chamber ever designed and built in a modular way

7/26

MEG DCH
16 trapezoidal 

modules with 10.6°
azimuthal spacing
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High wire density
ZOOM on a sector 
of the US endplate
➢ Anode wires
➢ Cathode wires

𝒆+

Drift cell

𝒆−

drift Central 
wire (+HV)

Ionization 
cluster

Amplification in avalanche in the 
proximity of the anode (high E field)

Drift chamber 
working principle

[ns]

The measured 
drift time is 
converted into 
a position 
measurement 
through 
dedicated 
space-time 
relations

Isochrones



Design and wiring
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𝑅𝑚𝑖𝑛
𝑧=𝑐𝑒𝑛𝑡𝑒𝑟 ≈ 170.2 mm

𝑅𝑚𝑖𝑛
𝑧=𝑒𝑛𝑑𝑝𝑙𝑎𝑡𝑒

≈ 196.5 mm

𝑅𝑚𝑎𝑥
𝑧=𝑐𝑒𝑛𝑡𝑒𝑟 ≈ 242.1 mm

𝑅𝑚𝑎𝑥
𝑧=𝑒𝑛𝑑𝑝𝑙𝑎𝑡𝑒

≈ 279.5 mm

Cell width (z=endplate): ≈ 6.7 ÷ 8.7 mm
Cell width (z=center): ≈ 5.8 ÷ 7.5 mm

Stereo wire 
geometry for 
longitudinal hit 
localization
➢ 𝜃𝑠𝑡𝑒𝑟𝑒𝑜 ≈

6° ÷ 8.5° as 
R increases

12
30° sectors

Endplate

➢ Wires are soldered at both ends on the 
pads of 2 PCBs (wire-PCBs) which are 
then mounted on the CDCH endplates

➢ Wiring inside a cleanroom

Wiring 
cylinder

Winding

➢ Anode wires: 20 μm Au-plated W
➢ Cathode wires: 40/50 μm Ag-plated Al

• 40 𝛍m ground mesh between layers
➢ Guard wires: 50 μm Ag-plated Al
➢ Field-to-Sense wire ratio 5:1

Cell width 
increases 
with R    
and |z|

Almost square 
drift cells

Each 
sector is
16 drift 

cells wide

Soldering 
pads

https://iopscience.iop.org/article/10.1088/1748-0221/12/07/C07022


Mechanical structure

➢ External CF structure
• Structural + gas tightness function

➢ CDCH mechanics proved to be stable (at µm level) 
and adequate to sustain a full MEG II run

HV cables

Aluminum inner 
extensions to 
connect CDCH 
to the MEG II 
beam line

➢ Modular assembly 
inside a cleanroom 

➢ Final stack of wire-
PCBs in one sector

➢ PEEK spacers 
adjustment after 
CMM geometry 
measurements

Anode tails where FE boards are 
plugged: HV + signals

Cathode tails: 
ground

➢ 20 μm-thick one-side 
aluminized Mylar foil
at inner radius

➢ To separate the inner 
beam + target volume 
filled with pure He 
from the wire volume 
filled with He:IsoB 
90:10 mixture

10/26



➢ FE electronics cooling system 
embedded in the board holders
• Power consumption for each 

channel: 40 mA at 2.2 V
• Heat dissipation capacity 

granted by a 1 kW chiller 
system: 300 W/endplate

➢ Dry air flushing inside the endcaps 
to avoid water condensation on 
electronics and dangerous 
temperature gradients

FE electronics

11/26

HV cables

➢ 216 FE boards per side
• 8 differential channels to read out signal from 8 cells
• Double amplification stage with low noise and distortion
• High bandwidth of nearly 400 MHz

o To be sensitive to the single ionization cluster and 
improve the drift distance measurement (cluster 
timing technique)

➢ Signal read out from both CDCH sides
➢ HV supplied from the US side

Output connector 
and HV stage on 
the bottom side

US

DS

https://www.sciencedirect.com/science/article/pii/S0168900215014667?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0920563214000267
https://www.sciencedirect.com/science/article/pii/S0920563214000267


Working point
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➢ Final CDCH length experimentally 
found through systematic HV tests at 
different lengths/wires elongations

➢ Final length set to +5.2 mm of wires 
elongation
• 65% of the elastic limit

2021 measurements 
on data

➢ HV map of the Working Point 
(WP) as a function of the layer

➢ Average HV value per layer + 
tuning by 10 V/layer to 
compensate for the variable cell 
dimensions with radius and 𝑧

Layer 1 
(z = 0)

G
ai

n
G

ai
n

Layer 9 
(z = 0)

➢ Garfield simulations on single electron gain
• Gas mixture He:Isobutane 90:10 and             

P = 970 mbar (typical at PSI)
➢ Working point → HV for gas gain 𝐺 = 5 × 105

• To be sensitive to the single ionization cluster

Gas gain = (2÷4) × 105

in agreement with the expectation

Garfield simulations



L1 drift cell 
electric 

field

L1 drift cell
drift lines 

and 
isochrones

L1 drift cell 
potential

One 30°
sector 

potential

Garfield++
with HV WP and 

He:isoB 90:10

Anode 
wire

Cathode 
wire

Cathode 
wire

Anode 
wire

Cathode wire Cathode wire

13/26

L1 drift cell 
potential



Liquid Xenon detector (LXe)
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MEG MEG II

846 
PMTs

4092 SiPMs 
(Hamamatsu 
Photonics)

+
668 PMTs

➢ Biggest liquid Xenon detector in the world with 900 liters
• Same C-shape cryostat (liquid phase at 165 K) of MEG

➢ Goal: measurement of the 𝛾 energy, time and position with 
an improvement of a factor × 2 with respect to MEG to 
suppress the background events in MEGII

➢ Keys of the upgrade
• Replacement of 216 2" PMTs in the 𝛾 entrance face 

with 4092 SiPMs (active area 12 × 12 mm2)
o Improvement of the spatial (~mm) and energy 

(~ 1%) resolutions thanks to the                    
light collection                                          
uniformity

o Lower material                                              
budget: 9% higher                                                   
Photon Detection                                                 
Efficiency/Quantum                                  
Efficiency (PDE/QE)

• 10% 𝒛-acceptance                                          
improvement per side                                                
thanks to the new                                                        
PMT layout on the                                                    
lateral faces

Radial 
extension 
~ 14 𝑋0

Power supply/readout of the SiPMs 
directly via the DAQ board



LXe calibrations

15/26

Type Process Energy Purpose Frequency

LED Blue light 460 nm Gain calibration Daily

Radioactive source 241Am(α,γ)237Np 5.5 MeV (α); 56 keV (γ) PDE calibration Daily

Cosmic ray µ from atmospheric showers Wide spectrum O(hundred MeV, GeV) Light yield monitor 3/week

CW proton 7Li(p,γ)8Be, 11B(p,γ)12C 14.8 MeV, 17.6 MeV (Li); 4.4 MeV, 11.6 MeV, 16.1 MeV (B) Light yield monitor 3/week

Thermal neutron capture 58Ni(n,γ)59Ni 9 MeV Light yield monitor 3/week

CEX π-(p,n)π0, π0→γγ 55 MeV, 83 MeV Energy scale/resolution Dedicated run

LH2 cryogenic system

70.5 MeV/c π-

CEX run 
configuration

➢ Cockcroft-Walton 
(CW) proton 
accelerator

➢ Dedicated DS 
beam line

DS side

US side



Radiative Decay Counter (RDC)
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➢ VETO detector to tag low-energy 𝑒+

(1-5 MeV) from AIF/RMD in time 
coincidence with high-energy 𝛾
(> 48 MeV) to remove these events 
from the 𝜇+ → 𝑒+𝛾 candidate sample

➢ Expected performances
• 𝜎𝑡 ≈ 100 ps, 𝜎𝐸 ≈ 8%

➢ Background reduction and 
improvement in the MEG II sensitivity 
up to 15%

➢ 12 plastic scintillators BC-418 (Saint Gobain)
➢ Time measurement ➢ 76 LYSO 

crystals
➢ Energy 

measurement

𝑡𝑒
𝑅𝐷𝐶 − 𝑡𝛾

𝐿𝑋𝑒[ns]

Beam rate

Plastic scintillators

LYSO crystals

Power supply/readout 
of the SiPMs directly 
via the DAQ board



Trigger and 
DAQ (TDAQ)
➢ Re-design of the MEGII detectors leads to an increase of a 

factor × 3 in the number of readout channels
• ≈9000 in total

➢ Integration of Trigger and DAQ operations in a single system: 
WaveDAQ
• 37 crates each housing 16 WDBs (256 channels each)
• + 1 Trigger Concentrator Board (TCB) for online data 

processing + clock and trigger signals distribution
• + 1 Data Concentrator Board (DCB) for data 

handling/formatting
➢ Acquisition of the whole waveform (as in MEG) for the offline 

background suppression
• Sampling at 𝟏. 𝟒 𝐆𝐒𝐏𝐒
• Digitization with 80 MHz ADCs to execute complex 

trigger algorithms with the integrated FPGA
o Estimate of the 𝛾 energy (𝐸𝛾) + 𝑒+𝛾 time 

coincidence (𝑡𝑒𝛾)

• Online resolution
o ∆𝑬𝜸 ~ 𝟐. 𝟓% (improvement factor × 1.5)

o ∆𝒕𝒆𝜸 ~ 𝟐 𝐧𝐬 (improvement factor × 1.5)

• Final trigger rate 10-30 Hz with selection efficiency ~ 𝟏

Trigger Concentrator Board (TCB) WaveDREAM Board (WDB)

WaveDREAM Board (WDB)
➢ 16 channels with programmable gain (0.5 ÷ 100) and shaper + SiPMs power supply
➢ Comparators for timing measurements
➢ Waveform analog sampling at 𝟏 ÷ 𝟓 𝐆𝐒𝐏𝐒 via the DRS4 (Domino Ring Sampler 4) chip

17/26



Main problems
and solutions
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SEM 

Optical 
microscope

Good

Breaking point 
with corrosion

➢ Breaking of 107 Al wires (90% 40 µm) in presence of humidity
➢ All broken wires successfully removed and eliminated other 

possible damaged wires by extra stretching CDCH (then again 
CDCH at the working length)

➢ No more broken wires due to corrosion since CDCH kept in inert 
atmosphere (flushed with Nitrogen or Helium once sealed)

➢ Corona-like discharges in correspondence 
of 6 whitish regions

➢ Problem cured with additives in the gas 
mixture

➢ Oxygen proved to be effective in reducing 
high currents (plasma cleaning?)

➢ Isopropyl alcohol crucial to keep stable the 
current level

CDCH history

Broken 
wire

➢ One of the discharge region 
photographed in a dark room

➢ CDCH closed with a transparent 
plexiglas shell and HV test with the 
standard He:IsoB 90:10 gas mixture

➢ Anomalously high currents 
in several sectors/layers 
during the first data taking

➢ Probably triggered by an 
accidental anode-cathode 
short circuit

380 µA

200 µA

https://link.springer.com/article/10.1134/S1063778819090059


CDCH conditioning and stable operations
L5 current

O2 analyzer

2%

1% 0.8% 0.5%

➢ We are very sensitive to the 
isopropyl alcohol concentration

➢ We experienced that 1-1.5% 
isoP concentration is crucial to 
keep the stability

➢ Current gas additives setting: 1.5% isoP + 0.5% O2

➢ From 2020 measurements we don’t observe a 
significative gain reduction due to O2

• We measured a limited efficiency decrease 
when O2 was at 1%

➢ Good current level stability in the whole CDCH at 
a beam intensity up to 5 × 107 µ+/s

➢ Currents see the proton beam and atmospheric 
pressure variations

➢ The measured currents translated in accumulated 
charge/cm agree with the design: ≈0.1 C/year/cm

➢ Example of conditioning period 
with current discharges in 
presence of the µ+ beam

➢ HV up to WP+40V and Oxygen 
concentration up to 2% to 
speed up the O2 cleaning

19/26

150 µA

100 µA

50 µA

10 µA



LXe PDE decrease and recovery by annealing
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PDE before/after annealing

Before After

➢ Experienced a Photon Detection Efficiency/Quantum efficiency (PDE/QE) 
decrease with beam time

➢ Caused by the SiPM surface damage by radiation
➢ Solution by performing the SiPM heating

• Annealing every year during the accelerator shutdown period
• Joule heat method: reverse bias with a dedicated power supply
• About two months to complete the annealing of all the sensors

➢ 15% PDE allows to operate the LXe at a beam rate of 5 × 107 µ+/s for 120 days



Physics data taking and 
current performances



TDAQ and pTC
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Relative angle

Positron 
energy

Photon 
energy

Relative time

𝑵𝑯𝑰𝑻 ≈ 𝟗. 𝟑
for signal 𝒆+

𝝈𝒕 ∝
𝝈𝟎

𝑵𝑯𝑰𝑻

→ 𝝈𝟎 ≈ 𝟏𝟎𝟓 𝒑𝒔; 𝝈𝒕 𝑵𝑯𝑰𝑻 ≈ 𝟑𝟖 𝒑𝒔
Significant improvement in the DAQ efficiency and 

stable operation up to 30 Hz trigger rate (× 3 the design)

Different beam rates

pTC time 
resolution

RDC to reject high-E RMD 
γ in the LXe by tagging 
the associated low-P e+

➢ Physics data taking since 2021 
(full DAQ electronics available) 
after 3 years of engineering 
runs (10% of DAQ electronics) 
and commissioning (despite the 
pandemic) with continuous 
improvements

➢ Run 2022 is the longest ever 
achieved in the MEG history



CDCH

22/26Full track trajectory from a Michel e+ event

Diagnostic tools
➢ Momentum spectrum of positrons from 

Michel decays → σP/bias
• PDF(p) = [PDFTHEORY(p) × Acceptance(p)] 

⊗ ResolutionTRIPLE-GAUSSIAN(Δp)
➢ Comparison of multiple turns made by the 

same track → kinematical resolutions/bias

σ1=0.78 mm
σ2=2.33 mm

σ1=2.25 mm
σ2=8.05 mm

σ1=7.07
mrad
σ2=24.16
mrad

σ1=8.10
mrad
σ2=26.16
mrad

pTC hits
CDCH hits

Helical 
trajectory

Target

DATA DT ≡ Double-Turn

HW alignment 
only (surveys)
➢ ± 100 µm 

range

➢ Hit-track residuals give a measurement of how misalignments, single-hit resolution and 
other systematics (B field) combine to determine the reconstruction performance

➢ Iterative wire alignment based on hit-track residuals of positron tracks from Michel decays
• Alternative method with a global fit using cosmic rays is on going

Residuals < 10 µm



LXe
Position resolution measured 
in 2018 with CW(Li) 17.6 MeV 
events + collimators
➢ (u, v) coordinates → LXe 

entrance face (x, y) 
coordinates → MEG (z, Rφ) 
coordinates

➢ w ≡ radial depth

➢ Energy resolution for 
deep events from CEX 
run (1.7%) is worst than 
the MC one (1.1%)

➢ Uniformity response vs. 
(u, v) under study

➢ σE/E is worst for shallow 
events (2%) with respect 
to deep events

Position 
resolution

Energy 
resolution [%] 

with w cut

σE/E [%] vs. u [cm] σE/E [%] vs. v [cm]

σE/E [%] vs. w [cm]

23/26

Data-MC agreement in the 
Eγ background spectrum



MEGII performance overview
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Variable Obtained (MEG) MEGII proposal Currently measured on data (MEG II)

∆𝐸𝑒 [keV] 380 130 90

∆𝜃𝑒, ∆𝜑𝑒 [mrad] 9, 9 7.0, 5.5 8, 7

Efficiency𝑒 [%] 40 70 65

∆𝐸𝛾 [%] (deep/shallow) 1.7/2.4 1.0/1.1 1.7/2.0

∆Position𝛾 [mm] 5 2.4 2.5

Efficiency𝛾 [%] 60 70 60

∆𝑡𝑒𝛾 [ps] 120 85 80

Positron 
variables

Photon 
variables

Combined

RMD 
peak

➢ 𝑒+ − γ relative timing resolution with the contributions 
of the LXe and pTC detectors from RMD events

➢ Agreement between the RMD and CEX analyses
• σt(CEX) = 65 ± 8 ps



Conclusions
and prospects



➢ In the world of the Intensity Frontier and CLFV the MEG
experiment with the first phase (current best Upper Limit) and 
now its upgrade MEGII play a starring role in the search for the 
𝜇+ → 𝑒+𝛾 decay

➢ The MEGII experiment is currently in the physics data taking 
phase after a big effort on the hardware side for the 
commissioning with continuous improvements

➢ Solid performances (tested on real data) are found with 
continuous improvements thanks to the analysis group

➢ Close to publish the first physics results
➢ BR 𝜇+ → 𝑒+𝛾 ~ 6 × 10−14 goal is achievable in 4-5 years
➢ MEGII is competitive with the new generation of CLFV 

experiments (Mu2e, COMET, DeeMe, Mu3e in the muon sector) 
and its search is complementary to the others
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Dipole term 4-fermion term

MEGII 
goal

Effective 
Lagrangian

Contribution of the dipole 
operator to the 4-fermion 

dominating processes

Contribution of the 4-fermion 
operator to the dipole 
dominating processes



Beyond 𝜇+ → 𝑒+𝛾: the X(17) boson search
➢ In 2016 the Atomki collaboration measured an excess in the 

angular distribution of the Internal Pair Creation (IPC) in the 
7Li(p, e+e-)8Be nuclear reaction

➢ This anomaly was confirmed by further measurements
• 3H(p, e+e-)4He reaction

➢ Possible interpretation
• Production of a new physics boson mediator of a fifth 

fundamental force that describes the interaction between 
dark and ordinary matter

• Its mass is expected to be 17 MeV → X(17)
➢ An independent experiment could confirm or not this results

• Artifact of the detector geometry???

➢ MEG II has all the ingredients to repeat the Atomki 
measurement
• CW proton accelerator (used for LXe detector calibrations)
• CDCH for e+e- measurement
• pTC as trigger
• B field → e+e- invariant mass with CDCH + COBRA magnet

p N → N’* → N’ (X →) e+e-
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MEGII
➢ First DAQ done
➢ Analysis ongoing

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.042501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.042501
https://iopscience.iop.org/article/10.1088/1742-6596/1643/1/012001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.071803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.071803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.071803
https://arxiv.org/abs/2102.01127


THANKS
FOR YOUR ATTENTION
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