

Physics at MEGII

Istituto Nazionale di Fisica Nucleare

Marco Chiappini (INFN Pisa)

New Frontiers in Lepton Flavor

16 May 2023

Link to the contribution on Indico

Outline

- Introduction to the MEG II experiment
- MEGII experimental apparatus
 - Beam and target
 - pixelated Timing Counter (pTC)
 - Cylindrical Drift CHamber (CDCH)
 - Liquid Xenon detector (LXe)
 - Radiative Decay Counter (RDC)
 - Trigger and DAQ (TDAQ)
- Main problems and solutions
- Physics data taking and current performances
- Conclusions and prospects

Introduction to the MEG II experiment

The MEG II experiment

5 Discovery

-3o Discovery

-90% C.L. Exclusion

90% C.L. MEG 2011

BR(µ

 10^{-12}

MEGII experimental apparatus

Beam and target: why PSI?

- The Paul Scherrer Institute (PSI) is the largest research institute for natural and engineering sciences within Switzerland
- World-class research in 3 main subject areas: matter and material; energy and environment; human health
- World's most powerful High Intensity Proton Accelerator (HIPA)
- > 590 MeV/1.4 MW p beam drives several user facilities including
 - Swiss Muon Source $(S\mu S)$: the world's most intense continuous muon source
 - Up to $10^8 \,\mu/s$ ($10^{10} \,\mu/s$ with the High Intensity Muon Beam HIMB upgrade)
 - 6 beamlines available for experiments using muons

pixelated Timing Counter (pTC)

- \succ Precise measurement of the $e^+\gamma$ time coincidence is one of the MEGII key features to suppress the dominant accidental background
- To meet MEG II requirements the pTC needs to measure the time of arrival of $\approx 50 \text{ MeV } e^+$ with $\sigma_t \sim 30 \text{ ps}$ @ high rate (few MHz)
- > The MEGII pTC is based on a new concept to overcome the MEG TC limitations
 - Fast plastic scintillators
 - \circ Good σ_t of a single counter due to its small dimensions
 - Pile-up hit rate kept under control
 - High segmentation: 256 scintillating tiles \times 2 modules (US-DS) instead of 15 \times 2 bars
 - Each e^+ time is measured with many counters to significantly improve the total σ_t
 - Flexible detector layout to maximize the e^+ detection efficiency and hit multiplicity

 $\overline{N_{HIT}} \approx 9$

Design

- One of the 2 pTC modules with 256 counters
- Inter-pixel time calibration with track- (high-momentum Michel e⁺ crossing several counters) and laser- (synchronous light pulses distributed to counters through optical fibers) based methods

600 mm

(IIIII)

W = 50 mm

000 mm

- > 2 semi-cylindrical super-modules mirror symmetric to each other and placed Up-Stream (US) and Down-Stream (DS) with respect to the μ^+ stopping target inside the COBRA spectrometer
 - Full e^+ angular acceptance coverage when γ points to LXe calorimeter
 - $23 < |z| < 116.7 \ cm, -165.8^{\circ} < \phi < +5.2^{\circ}$
- > 256 counters per super-module
 - 16 counters @ 5.5 cm interval in z and 16 counters @ 10.3° interval in ϕ
 - 45° tilt angle to be \approx perpendicular to e^+ trajectories

- Low-mass single volume detector with high granularity filled with He:iC₄H₁₀ 90:10 gas mixture
 - + additives to improve the operational stability: 1.5% isopropyl alcohol + 0.5% Oxygen
 - 9 concentric layers of 192 drift cells defined by 11904 wires: $\Delta R \approx 8$ cm active region
 - Small drift cells few mm wide: occupancy of ≈1.5 MHz/cell (center) near the stopping target
 - High density of sensitive elements: ×4 hits more than the MEG drift chamber (DCH)
- > Total radiation length $1.6 \times 10^{-3} X_0$: less than $2 \times 10^{-3} X_0$ of MEG DCH or ≈150 µm of Silicon
 - MCS minimization and γ background reduction (bremsstrahlung and Annihilation-In-Flight)
- \blacktriangleright Extremely high wires density (12 wires/cm²) \rightarrow the classical technique with wires anchored to endplates with feedthroughs is hard to implement
 - CDCH is the first drift chamber ever designed and built in a modular way

Mechanical structure

- Final stack of wire-PCBs in one sector
- PEEK spacers

 adjustment after
 CMM geometry
 measurements

Anode tails where FE boards are plugged: HV + signals

- 20 µm-thick one-side aluminized Mylar foil at inner radius
 To concrete the inner
- To separate the inner beam + target volume filled with pure He from the wire volume filled with He:IsoB 90:10 mixture

10/26

- External CF structure
 - Structural + gas tightness function
- CDCH mechanics proved to be stable (at µm level) and adequate to sustain a full MEG II run

FE electronics

> 216 FE boards per side

- 8 differential channels to read out signal from 8 cells
- Double amplification stage with low noise and distortion
- High bandwidth of nearly 400 MHz
 - To be sensitive to the single ionization cluster and improve the drift distance measurement (<u>cluster</u> <u>timing technique</u>)
- Signal read out from both CDCH sides
- ➢ HV supplied from the US side

Output connector and HV stage on the bottom side

- FE electronics cooling system embedded in the board holders
 - Power consumption for each channel: 40 mA at 2.2 V
 - Heat dissipation capacity granted by a 1 kW chiller system: 300 W/endplate
- Dry air flushing inside the endcaps to avoid water condensation on electronics and dangerous temperature gradients

Working point

- Garfield simulations on single electron gain
 - Gas mixture He: Isobutane 90:10 and P = 970 mbar (typical at PSI)
- Working point \rightarrow HV for gas gain $G = 5 \times 10^5$
 - To be sensitive to the single ionization cluster

Gain

1200

800

600

400

200

- Garfield simulations χ² / ndf 17.48/8 \succ 0.02872 ± 0.009916 Const 1400 Slope 82.14 ± 1.716 Offset 0 ± 0 Inner radius [m³⁰⁰ Layer 9 200 (z = 0)100 1450 HV [V] -100-200 1550 HV [V] \geq
- \geq HV map of the Working Point (WP) as a function of the layer Average HV value per layer + tuning by 10 V/layer to compensate for the variable cell dimensions with radius and z

- ➢ Final CDCH length experimentally found through systematic HV tests at different lengths/wires elongations
- Final length set to +5.2 mm of wires elongation
 - 65% of the elastic limit

Liquid Xenon detector (LXe)

Biggest liquid Xenon detector in the world with 900 liters

- Same **C-shape cryostat** (liquid phase at 165 K) of MEG
- $\blacktriangleright \qquad \mbox{Goal: measurement of the γ energy, time and position with an improvement of a factor \times 2 with respect to MEG to suppress the background events in MEGII$
- ➢ Keys of the upgrade
 - Replacement of 216 2" PMTs in the γ entrance face with 4092 SiPMs (active area $12 \times 12 \text{ mm}^2$)
 - Improvement of the spatial (~ mm) and energy
 (~ 1%) resolutions thanks to the
 - light collection uniformity
 - Lower material budget: 9% higher
 Photon Detection
 Efficiency/Quantum
 Efficiency (PDE/QE)
 - 10% z-acceptance
 improvement per side
 thanks to the new
 PMT layout on the
 lateral faces

Power supply/readout of the SiPMs directly via the DAQ board

LXe calibrations

Radiative Decay Counter (RDC)

[ns]

Trigger and DAQ (TDAQ)

- Re-design of the MEGII detectors leads to an increase of a factor × 3 in the number of readout channels
 - ≈9000 in total
- Integration of Trigger and DAQ operations in a single system: WaveDAQ
 - 37 crates each housing 16 WDBs (256 channels each)
 - + 1 Trigger Concentrator Board (TCB) for online data processing + clock and trigger signals distribution
 - + 1 Data Concentrator Board (DCB) for data handling/formatting
- Acquisition of the whole waveform (as in MEG) for the offline background suppression
 - Sampling at 1. 4 GSPS
 - Digitization with 80 MHz ADCs to execute complex trigger algorithms with the integrated FPGA
 - Estimate of the γ energy $(E_{\gamma}) + e^+ \gamma$ time coincidence $(t_{e\gamma})$
 - Online resolution
 - \circ $\Delta E_{\gamma} \sim 2.5\%$ (improvement factor $\times 1.5$)
 - $\Delta t_{e\gamma} \sim 2 \text{ ns}$ (improvement factor $\times 1.5$)
 - Final trigger rate 10-30 Hz with selection efficiency ~ 1

WaveDREAM Board (WDB)

- > 16 channels with programmable gain $(0.5 \div 100)$ and shaper + SiPMs power supply
- Comparators for timing measurements
- ➤ Waveform analog sampling at 1 ÷ 5 GSPS via the DRS4 (Domino Ring Sampler 4) chip

Main problems and solutions

CDCH history

- > Breaking of 107 Al wires (90% 40 μ m) in presence of humidity
- All broken wires successfully removed and eliminated other possible damaged wires by extra stretching CDCH (then again CDCH at the working length)
- No more broken wires due to corrosion since CDCH kept in inert atmosphere (flushed with Nitrogen or Helium once sealed)

 Anomalously high currents in several sectors/layers during the first data taking
 Probably triggered by an accidental anode-cathode short circuit

380 uA

- One of the discharge region photographed in a dark room
- CDCH closed with a transparent plexiglas shell and HV test with the standard He:IsoB 90:10 gas mixture
- Corona-like discharges in correspondence of 6 whitish regions
- Problem cured with additives in the gas mixture
- Oxygen proved to be effective in reducing high currents (plasma cleaning?)
- Isopropyl alcohol crucial to keep stable the current level

CDCH conditioning and stable operations

LXe PDE decrease and recovery by annealing

Power supply

After

20/26

0.18

0.14

not annealed

0.18 PDE

).16

- Joule heat method: reverse bias with a dedicated power supply
- About two months to complete the annealing of all the sensors
- > 15% PDE allows to operate the LXe at a beam rate of $5 \times 10^7 \,\mu^+/s$ for 120 days

Physics data taking and current performances

TDAQ and pTC

Ð

2.5

Run 2022

Run 2012

MEGII performance overview

Variable	Obtained (MEG)	MEGII proposal	Currently measured on data (MEG II)	
ΔE_e [keV]	380	130	90	Positron variables
$\Delta heta_e, \Delta arphi_e$ [mrad]	9, 9	7.0, 5.5	8, 7	
Efficiency _e [%]	40	70	65	
$\Delta E_{oldsymbol{\gamma}}$ [%] (deep/shallow)	1.7/2.4	1.0/1.1	1.7/2.0	Photon variables
$\Delta Position_{\gamma}$ [mm]	5	2.4	2.5	
Efficiency _γ [%]	60	70	60	
$\Delta t_{e\gamma}$ [ps]	120	85	80	Combined
$ \begin{array}{c} & e^+ - \gamma r \\ & \text{of the L} \\ & \end{array} \\ & \begin{array}{c} \\ & \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	elative timing resolution (e and pTC detectors fr ent between the RMD CEX) = 65 ± 8 ps	on with the contributio rom RMD events and CEX analyses	ons 1500 1000 1000	$(69 \pm 5) \oplus \frac{105}{\sqrt{n_{TC}}}$
 Agreeme σ_t(ent between the RMD CEX) = 65 ± 8 ps	and CEX analyses		/ photon

-2 -1 0 1

2

t_{ey} (ns)

24/26

Conclusions and prospects

- ➤ In the world of the Intensity Frontier and CLFV the MEG experiment with the first phase (current best Upper Limit) and now its upgrade MEGII play a starring role in the search for the µ⁺ → e⁺γ decay
- The MEGII experiment is currently in the physics data taking phase after a big effort on the hardware side for the commissioning with continuous improvements
- Solid performances (tested on real data) are found with continuous improvements thanks to the analysis group
- Close to publish the first physics results
- > BR($\mu^+ \rightarrow e^+ \gamma$) ~ 6 × 10⁻¹⁴ goal is achievable in 4-5 years
- MEGII is competitive with the new generation of CLFV experiments (Mu2e, COMET, DeeMe, Mu3e in the muon sector) and its search is complementary to the others

Beyond $\mu^+ \rightarrow e^+ \gamma$: the X(17) boson search

- In 2016 the Atomki collaboration measured an excess in the angular distribution of the Internal Pair Creation (IPC) in the ⁷Li(p, e⁺e⁻)⁸Be nuclear reaction
- > This anomaly was confirmed by further measurements
 - ³H(p, e⁺e⁻)⁴He reaction
- Possible interpretation
 - Production of a new physics boson mediator of a fifth fundamental force that describes the interaction between dark and ordinary matter

 $p N \rightarrow N'^* \rightarrow N' (X \rightarrow) e^+e^-$

- Its mass is expected to be 17 MeV \rightarrow X(17)
- > An independent experiment could confirm or not this results
 - Artifact of the detector geometry???
- MEG II has all the ingredients to repeat the Atomki measurement
 - CW proton accelerator (used for LXe detector calibrations)
 - CDCH for e⁺e⁻ measurement
 - pTC as trigger
 - B field $\rightarrow e^+e^-$ invariant mass with CDCH + COBRA magnet

THANKS FOR YOUR ATTENTION