New Frontiers in Lepton Flavor

## Phenomenology of Lepton Flavour Violation

Lorenzo Calibbi



INFN and University of Pisa, May 16th 2023

### Motivation



Why not *charged* lepton flavour violation (CLFV):

$$\mu \to e\gamma, \ \tau \to \mu\gamma, \ \mu \to eee, \text{ etc.}?$$

LFV phenomenology

CLFV has been sought for almost 80 years...



LFV phenomenology

- Neutrinos oscillate → Lepton family numbers are not conserved!
   (while they would be exact global symmetries, if neutrinos were massless)
- Neutrino mass eigenstates couple to charged leptons of different flavours through the PMNS
- In the SM + massive neutrinos:

$$\frac{\Gamma(\ell_{\alpha} \to \ell_{\beta} \gamma)}{\Gamma(\ell_{\alpha} \to \ell_{\beta} \nu \bar{\nu})} = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} U_{\alpha k} U_{\beta k}^{*} \frac{m_{\nu_{k}}^{2}}{M_{W}^{2}} \right|^{2}$$

Cheng Li '77, '80; Petcov '77

 $\nu_k$ 

 $\ell_{\beta}$ 

$$\implies BR(\mu \to e\gamma) \approx BR(\tau \to e\gamma) \approx BR(\tau \to \mu\gamma) = 10^{-55} \div 10^{-54}$$

Large mixing, but huge suppression due to small neutrino masses

 $\ell_{\alpha}$ 

In presence of NP at the TeV we can expect large effects



• It probes scales far beyond the LHC reach

For a pedagogical introduction (exp + th) cf. LC and Signorelli '17

LFV phenomenology

| LFV observable                                    | I                    | Present bounds         | Expec                | ted future limits   |
|---------------------------------------------------|----------------------|------------------------|----------------------|---------------------|
| ${ m BR}(\mu 	o e\gamma)$                         | $4.2\times10^{-13}$  | MEG (2016) [28]        | $6 \times 10^{-14}$  | MEG II [29]         |
| $BR(\mu \rightarrow eee)$                         | $1.0\times 10^{-12}$ | SINDRUM (1988) [30]    | $10^{-16}$           | Mu3e [31]           |
| $\mathrm{CR}(\mu  ightarrow e,\mathrm{Au})$       | $7.0\times10^{-13}$  | SINDRUM II (2006) [32] |                      | ) –                 |
| $\operatorname{CR}(\mu \to e, \operatorname{Al})$ |                      |                        | $6 	imes 10^{-17}$   | COMET/Mu2e [33, 34] |
| ${\rm BR}(Z\to e\mu)$                             | $2.62\times 10^{-7}$ | ATLAS (2022) [35]      | $10^{-8} - 10^{-10}$ | FCC-ee/CEPC [36]    |
| $\mathrm{BR}(	au 	o e\gamma)$                     | $3.3 	imes 10^{-8}$  | BaBar (2010) [37]      | $9 \times 10^{-9}$   | Belle II [25, 38]   |
| $\mathrm{BR}(\tau \to eee)$                       | $2.7 	imes 10^{-8}$  | Belle (2010) [39]      | $4.7\times10^{-10}$  | Belle II [25, 38]   |
| ${\rm BR}(\tau \to e \mu \mu)$                    | $2.7 	imes 10^{-8}$  | Belle (2010) [39]      | $4.5\times10^{-10}$  | Belle II [25, 38]   |
| $BR(\tau \to \pi e)$                              | $8.0 	imes 10^{-8}$  | Belle (2007) [40]      | $7.3	imes10^{-10}$   | Belle II [25, 38]   |
| $\mathrm{BR}(\tau \to \rho e)$                    | $1.8 	imes 10^{-8}$  | Belle (2011) [41]      | $3.8 	imes 10^{-10}$ | Belle II [25, 38]   |
| $\mathrm{BR}(Z \to e\tau)$                        | $5.0 	imes 10^{-6}$  | ATLAS (2021) [42]      | $10^{-9}$            | FCC-ee/CEPC [36]    |
| $BR(\tau \to \mu \gamma)$                         | $4.2 	imes 10^{-8}$  | Belle (2021) [43]      | $6.9	imes10^{-9}$    | Belle II [25, 38]   |
| ${ m BR}(	au 	o \mu \mu \mu)$                     | $2.1 	imes 10^{-8}$  | Belle (2010) [39]      | $3.6	imes10^{-10}$   | Belle II [25, 38]   |
| $BR(\tau \rightarrow \mu ee)$                     | $1.8 	imes 10^{-8}$  | Belle (2010) [39]      | $2.9 	imes 10^{-10}$ | Belle II [25, 38]   |
| $BR(\tau \to \pi \mu)$                            | $1.1 	imes 10^{-7}$  | Babar (2006) [44]      | $7.1 	imes 10^{-10}$ | Belle II [25, 38]   |
| $BR(\tau \to \rho \mu)$                           | $1.2 	imes 10^{-8}$  | Belle (2011) [41]      | $5.5 	imes 10^{-10}$ | Belle II [25, 38]   |
| $BR(Z \to \mu \tau)$                              | $6.5 	imes 10^{-6}$  | ATLAS (2021) [42]      | $10^{-9}$            | FCC-ee/CEPC [36]    |

Table 2: Present 90% CL upper limits (95% CL for the Z decays) and future expected sensitivities for the set of LFV transitions relevant for our analysis.

... and we have experiments!



LFV phenomenology

CLFV from heavy new physics: the SM effective field theory

If NP scale 
$$\Lambda \gg m_W$$
:  $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_a C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_a C_a^{(6)} Q_a^{(6)} + \dots$ 

|                       | 4-leptons operators                                                                      | Dipole operators     |                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|
| $Q_{\ell\ell}$        | $(\bar{L}_L \gamma_\mu L_L) (\bar{L}_L \gamma^\mu L_L)$                                  | $Q_{eW}$             | $(\bar{L}_L \sigma^{\mu u} e_R) \tau_I \Phi W^I_{\mu u}$                                              |
| ) <sub>ee</sub>       | $(ar{e}_R\gamma_\mu e_R)(ar{e}_R\gamma^\mu e_R)$                                         | $Q_{eB}$             | $(\bar{L}_L \sigma^{\mu u} e_R) \Phi B_{\mu u}$                                                       |
| $\ell e$              | $(\bar{L}_L \gamma_\mu L_L) (\bar{e}_R \gamma^\mu e_R)$                                  |                      |                                                                                                       |
|                       | 2-lepton 2-q                                                                             | uark operators       |                                                                                                       |
| $\binom{1}{\ell q}$   | $(\bar{L}_L \gamma_\mu L_L) (\bar{Q}_L \gamma^\mu Q_L)$                                  | $Q_{\ell u}$         | $(\bar{L}_L \gamma_\mu L_L)(\bar{u}_R \gamma^\mu u_R)$                                                |
| $\binom{(3)}{\ell q}$ | $(\bar{L}_L \gamma_\mu 	au_I L_L) (\bar{Q}_L \gamma^\mu 	au_I Q_L)$                      | $Q_{eu}$             | $(ar{e}_R\gamma_\mu e_R)(ar{u}_R\gamma^\mu u_R)$                                                      |
| eq                    | $(ar{e}_R\gamma^\mu e_R)(ar{Q}_L\gamma_\mu Q_L)$                                         | $Q_{\ell edq}$       | $(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$                                                                      |
| $\ell d$              | $(ar{L}_L\gamma_\mu L_L)(ar{d}_R\gamma^\mu d_R)$                                         | $Q^{(1)}_{\ell equ}$ | $(ar{L}_{L}^{a}e_{R})\epsilon_{ab}(ar{Q}_{L}^{b}u_{R})$                                               |
| ed                    | $(ar{e}_R\gamma_\mu e_R)(ar{d}_R\gamma^\mu d_R)$                                         | $Q^{(3)}_{\ell equ}$ | $(\bar{L}^a_i\sigma_{\mu\nu}e_R)\epsilon_{ab}(\bar{Q}^b_L\sigma^{\mu\nu}u_R)$                         |
|                       | Lepton-Hi                                                                                | ggs operators        |                                                                                                       |
| $D_{\Phi\ell}^{(1)}$  | $(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{L}\gamma^{\mu}L_{L})$ | $Q^{(3)}_{\Phi\ell}$ | $(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}{}^{I}_{\mu}\Phi)(\bar{L}_{L}	au_{I}\gamma^{\mu}L_{L})$ |
| $\Phi e$              | $(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(ar{e}_{R}\gamma^{\mu}e_{R})$   | $Q_{e\Phi3}$         | $(ar{L}_L e_R \Phi) (\Phi^\dagger \Phi)$                                                              |

LFV phenomenology

## Probing very high-energy scales

$$\mathcal{L} = \mathcal{L}_{\rm SM} + rac{1}{\Lambda} \sum_{a} C_a^{(5)} Q_a^{(5)} + rac{1}{\Lambda^2} \sum_{a} C_a^{(6)} Q_a^{(6)} + \dots$$

|                                                 | $ C_a  \ [\Lambda = 1 \ {\rm TeV}]$ | $\Lambda \text{ (TeV) } [ C_a  = 1]$ | CLFV Process                                      |
|-------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------|
| $C^{\mu e}_{e\gamma}$                           | $2.1 	imes 10^{-10}$                | $6.8 	imes 10^4$                     | $\mu  ightarrow e\gamma$                          |
| $C^{\mu\mu\mu\mu e,e\mu\mu\mu}_{\ell e}$        | $1.8	imes10^{-4}$                   | 75                                   | $\mu  ightarrow e \gamma$ [1-loop                 |
| $C_{\ell e}^{\mu \tau 	au e, e 	au 	au \mu}$    | $1.0 \times 10^{-5}$                | 312                                  | $\mu  ightarrow e \gamma$ [1-loop                 |
| $C^{\mu e}_{e\gamma}$                           | $4.0 	imes 10^{-9}$                 | $1.6 	imes 10^4$                     | $\mu \rightarrow eee$                             |
| $C^{\mu eee}_{\ell\ell,ee}$                     | $2.3 	imes 10^{-5}$                 | 207                                  | $\mu \rightarrow eee$                             |
| $C_{\ell e}^{\mu eee,ee\mu e}$                  | $3.3 	imes 10^{-5}$                 | 174                                  | $\mu  ightarrow eee$                              |
| $C^{\mu e}_{e\gamma}$                           | $5.2 \times 10^{-9}$                | $1.4 	imes 10^4$                     | $\mu^{-}\mathrm{Au}  ightarrow e^{-}\mathrm{Au}$  |
| $C^{e\mu}_{\ell q,\ell d,ed}$                   | $1.8 	imes 10^{-6}$                 | 745                                  | $\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$ |
| $C_{eq}^{e\mu}$                                 | $9.2 \times 10^{-7}$                | $1.0	imes10^3$                       | $\mu^{-}\mathrm{Au}  ightarrow e^{-}\mathrm{Au}$  |
| $C^{e\mu}_{\ell u,eu}$                          | $2.0 	imes 10^{-6}$                 | 707                                  | $\mu^{-}\mathrm{Au}  ightarrow e^{-}\mathrm{Au}$  |
| $C_{e\gamma}^{\tau\mu}$                         | $2.7 	imes 10^{-6}$                 | 610                                  | $	au 	o \mu \gamma$                               |
| $C_{e\gamma}^{\tau e}$                          | $2.4 \times 10^{-6}$                | 650                                  | $	au  ightarrow e \gamma$                         |
| $C^{\mu\tau\mu\mu}_{\ell\ell,ee}$               | $7.8	imes10^{-3}$                   | 11.3                                 | $	au  ightarrow \mu \mu \mu$                      |
| $C_{\ell e}^{\mu 	au \mu \mu, \mu \mu \mu 	au}$ | $1.1 \times 10^{-2}$                | 9.5                                  | $	au 	o \mu \mu \mu$                              |
| $C^{e	auee}_{\ell\ell,ee}$                      | $9.2 	imes 10^{-3}$                 | 10.4                                 | $\tau \to eee$                                    |
| $C_{\ell e}^{e\tau ee, eee\tau}$                | $1.3 	imes 10^{-2}$                 | 8.8                                  | $\tau \rightarrow eee$                            |

LFV phenomenology



LFV phenomenology

Example: *only* dipole operators

$$\mathcal{L} \supset \frac{C_{e\gamma}^{e\mu}}{\Lambda^2} \frac{v}{\sqrt{2}} \,\bar{e} \,\sigma_{\mu\nu} P_R \,\mu F^{\mu\nu} + \frac{C_{e\gamma}^{\mu e}}{\Lambda^2} \frac{v}{\sqrt{2}} \,\bar{\mu} \,\sigma_{\mu\nu} P_R \,e \,F^{\mu\nu} + \text{h.c.},$$



 $BR(\mu \to eee) \simeq 0.0067 \times BR(\mu \to e\gamma)$  $CR(\mu \operatorname{Al} \to e \operatorname{Al}) \simeq 0.0026 \times BR(\mu \to e\gamma)$ 

- 10<sup>-15</sup> (10<sup>-16</sup>) sensitivity on  $\mu \rightarrow eee$  /  $\mu \rightarrow e$  conversion needed to test dipole operators beyond MEG (MEG II)
- Future  $\mu \rightarrow e\gamma$  searches would require to reach (at least) a sensitivity < 10<sup>-14</sup> to go beyond Mu3e/Mu2e/COMET

Testing CLFV SMEFT operators



LFV phenomenology

Testing CLFV SMEFT operators



LFV phenomenology

#### Correlations in the $\mu$ -*e* sector

Searches for the different  $\mu \rightarrow e$  modes are complementary tools in order to discriminate among different new physics models:

TABLE VII. – Pattern of the relative predictions for the  $\mu \rightarrow e$  processes as predicted in several models (see the text for details). Whether the dominant contributions to  $\mu \rightarrow eee$  and  $\mu \rightarrow e$  conversion are at the tree or at the loop level is indicated; Loop<sup>\*</sup> indicates that there are contributions that dominate over the dipole one, typically giving an enhancement compared to eqs. (40), (41).

| Model           | $\mu \rightarrow eee$ | $\mu N \to e N$ | $\frac{\mathrm{BR}(\mu \rightarrow eee)}{\mathrm{BR}(\mu \rightarrow e\gamma)}$ | $\frac{\mathrm{CR}(\mu N \rightarrow eN)}{\mathrm{BR}(\mu \rightarrow e\gamma)}$ |
|-----------------|-----------------------|-----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| MSSM            | Loop                  | Loop            | $\approx 6 \times 10^{-3}$                                                      | $10^{-3} - 10^{-2}$                                                              |
| Type-I seesaw   | Loop*                 | Loop*           | $3 \times 10^{-3} - 0.3$                                                        | 0.1 - 10                                                                         |
| Type-II seesaw  | Tree                  | Loop            | $(0.1-3) \times 10^3$                                                           | $\mathcal{O}(10^{-2})$                                                           |
| Type-III seesaw | Tree                  | Tree            | $\approx 10^3$                                                                  | $\mathcal{O}(10^3)$                                                              |
| LFV Higgs       | $Loop^{(a)}$          | $Loop^{*(a)}$   | $\approx 10^{-2}$                                                               | $\mathcal{O}(0.1)$                                                               |
| Composite Higgs | $Loop^*$              | Loop*           | 0.05 – 0.5                                                                      | 2-20                                                                             |

(a) A tree-level contribution to this process exists but it is subdominant.

LC Signorelli '17

If dipole operator dominates
 (e.g. as in R-parity conserving SUSY)

Also colliders: LFV Higgs decays

In the SM Higgs couplings and masses aligned  $\rightarrow$  flavour conserving  $(m_f)_{ij} = \frac{v}{\sqrt{2}} (Y_f)_{ij}, \qquad -\mathcal{L}_{h\bar{f}f} = \frac{m_f}{v} \bar{f}_L f_R h + \text{h.c.}$ 

This is not the case if there is 2nd Higgs doublet or ops such as  $\overline{L}_L e_R \Phi(\Phi^{\dagger} \Phi)$ Useful parameterisation:  $-\mathcal{L} \supset (m_e)_i \overline{e}_{L\,i} e_{R\,i} + (Y_e^h)_{ij} \overline{e}_{L\,i} e_{R\,j} h + h.c.$ 

Harnik Kopp Zupan '12

These couplings induce both LFV Higgs decays and low-energy processes:



LFV phenomenology

Also colliders: LFV Higgs decays

In the SM Higgs couplings and masses aligned  $\rightarrow$  flavour conserving  $(m_f)_{ij} = \frac{v}{\sqrt{2}} (Y_f)_{ij}, \qquad -\mathcal{L}_{h\bar{f}f} = \frac{m_f}{v} \bar{f}_L f_R h + \text{h.c.}$ 

This is not the case if there is 2nd Higgs doublet or ops such as  $\overline{L}_L e_R \Phi(\Phi^{\dagger} \Phi)$ Useful parameterisation:  $-\mathcal{L} \supset (m_e)_i \overline{e}_{L\,i} e_{R\,i} + (Y_e^h)_{ij} \overline{e}_{L\,i} e_{R\,j} h + h.c.$ 

Harnik Kopp Zupan '12

Limits:  $BR(h \to e\mu) < 4.4 \times 10^{-5}$ ,  $BR(h \to e\tau) < 2.0 \times 10^{-3}$ ,  $BR(h \to \mu\tau) < 1.8 \times 10^{-3}$ 

ATLAS, CMS '23

|   | Process                                         | Coupling                                       | Bound                         |
|---|-------------------------------------------------|------------------------------------------------|-------------------------------|
|   | $h \rightarrow \mu e$                           | $\sqrt{ Y^h_{\mu e} ^2 +  Y^h_{e \mu} ^2}$     | $< 1.9 \times 10^{-4}$        |
|   | $\mu  ightarrow e \gamma$                       | $\sqrt{ Y^h_{\mu e} ^2 +  Y^h_{e \mu} ^2}$     | $< 2.1 \times 10^{-6}$        |
|   | $\mu \rightarrow eee$                           | $\sqrt{ Y^h_{\mu e} ^2 +  Y^h_{e \mu} ^2}$     | $\lesssim 3.1 \times 10^{-5}$ |
|   | $\mu \operatorname{Ti} \to e \operatorname{Ti}$ | $\sqrt{ Y^h_{\mu e} ^2 +  Y^h_{e \mu} ^2}$     | $< 1.2 \times 10^{-5}$        |
| > | $h \rightarrow \tau e$                          | $\sqrt{ Y^h_{\tau e} ^2 +  Y^h_{e\tau} ^2}$    | $< 1.3 \times 10^{-3}$        |
|   | $	au  ightarrow e\gamma$                        | $\sqrt{ Y^h_{	au e} ^2 +  Y^h_{e	au} ^2}$      | < 0.014                       |
|   | au  ightarrow eee                               | $\sqrt{ Y^h_{\tau e} ^2 +  Y^h_{e\tau} ^2}$    | $\lesssim 0.12$               |
|   | $h  ightarrow 	au \mu$                          | $\sqrt{ Y^h_{	au\mu} ^2 +  Y^h_{\mu	au} ^2}$   | $< 1.2 \times 10^{-3}$        |
|   | $	au  ightarrow \mu\gamma$                      | $\sqrt{ Y^h_{	au\mu} ^2 +  Y^h_{\mu	au} ^2}$   | < 0.016                       |
|   | $	au 	o \mu \mu \mu$                            | $\sqrt{ Y^h_{\tau\mu} ^2 +  Y^h_{\mu\tau} ^2}$ | $\lesssim 0.25$               |

LFV phenomenology

Also colliders: LFV Higgs decays

In the SM Higgs couplings and masses aligned  $\rightarrow$  flavour conserving  $(m_f)_{ij} = \frac{v}{\sqrt{2}} (Y_f)_{ij}, \qquad -\mathcal{L}_{h\bar{f}f} = \frac{m_f}{v} \bar{f}_L f_R h + \text{h.c.}$ 

This is not the case if there is 2nd Higgs doublet or ops such as  $\overline{L}_L e_R \Phi(\Phi^{\dagger} \Phi)$ Useful parameterisation:  $-\mathcal{L} \supset (m_e)_i \overline{e}_{L\,i} e_{R\,i} + (Y_e^h)_{ij} \overline{e}_{L\,i} e_{R\,j} h + h.c.$ 



LFV phenomenology

Also colliders: LFV Z decays at future circular e+e-

|                      | CEPC/FCC-ee Z-pole run: O(10 <sup>12</sup> ) Z M. Dam '18 |                            |                      |  |  |
|----------------------|-----------------------------------------------------------|----------------------------|----------------------|--|--|
| Mode                 | LEP bound (95% CL)                                        | LHC bound (95% CL)         | CEPC/FCC-ee exp.     |  |  |
| $BR(Z \to \mu e)$    | $1.7 \times 10^{-6}$ [2]                                  | $7.5 \times 10^{-7}$ [3]   | $10^{-8} - 10^{-10}$ |  |  |
| $BR(Z \to \tau e)$   | $9.8 \times 10^{-6}$ [2]                                  | $5.0 	imes 10^{-6}$ [4, 5] | $10^{-9}$            |  |  |
| $BR(Z \to \tau \mu)$ | $1.2 \times 10^{-5}$ [6]                                  | $6.5 	imes 10^{-6}$ [4, 5] | $10^{-9}$            |  |  |

- LHC searches limited by backgrounds (in particular  $Z \rightarrow \tau \tau$ ): max ~10 improvement can be expected at HL-LHC (3000/fb)
- A Tera Z factory can improve the present (future) bounds by 4 (3) orders of magnitude
- The question is: can we find new physics searching for these modes? Low-energy LFV decays are unavoidably induced, giving *indirect* bounds

## Model-independent indirect limits on Z LFV decays

| Observable                   | Operator                                                                 | Indirect Limit on LFVZD | Strongest constraint      |
|------------------------------|--------------------------------------------------------------------------|-------------------------|---------------------------|
| lepton-Higgs ops             | $\int \left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\mu}$ | $3.7 \times 10^{-13}$   | $\mu \to e,  \mathrm{Au}$ |
| $BB(Z \rightarrow \mu e)$    | $Q^{e\mu}_{arphi e}$                                                     | $9.4 \times 10^{-15}$   | $\mu \to e,  \mathrm{Au}$ |
| dinale one                   | $\int Q_{eB}^{e\mu}$                                                     | $1.4\times10^{-23}$     | $\mu \to e \gamma$        |
|                              | $Q_{eW}^{e\mu}$                                                          | $1.6\times 10^{-22}$    | $\mu  ightarrow e \gamma$ |
|                              | $\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\tau}$     | $6.3 	imes 10^{-8}$     | $\tau \to \rho  e$        |
| $BB(Z \rightarrow \tau e)$   | $Q^{e	au}_{arphi e}$                                                     | $6.3 	imes 10^{-8}$     | $\tau \to \rho  e$        |
| DR(2-770)                    | $Q^{e	au}_{eB}$                                                          | $1.2 \times 10^{-15}$   | $\tau \to e \gamma$       |
|                              | $Q^{e	au}_{eW}$                                                          | $1.3 \times 10^{-14}$   | $\tau \to e \gamma$       |
|                              | $\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{\mu\tau}$   | $4.3 \times 10^{-8}$    | $\tau \to \rho  \mu$      |
| $BB(Z \rightarrow \tau \mu)$ | $Q^{\mu	au}_{arphi e}$                                                   | $4.3 \times 10^{-8}$    | $\tau \to \rho  \mu$      |
|                              | $Q^{\mu	au}_{eB}$                                                        | $1.5 \times 10^{-15}$   | $\tau \to \mu \gamma$     |
|                              | $Q^{\mu	au}_{eW}$                                                        | $1.7 \times 10^{-14}$   | $\tau \to \mu \gamma$     |
|                              |                                                                          |                         |                           |

LC Marcano Roy '21

LFV phenomenology



• A Tera Z can test LFV new physics scales searching for  $Z \rightarrow \tau \ell$  at the level of what Belle II will do through LFV tau decays (or better)



LC Marcano Roy '21

#### LFV phenomenology

#### 2 quarks - 2 lepton operators

Low-energy CLFV and LFV Z decays are also sensitive to this kind of operators. Example involving heavy quark flavours:



LFV phenomenology

What about *light* new physics?

Assume there is a *light*, *invisible*, new particle "*a*" with *flavour-violating couplings* to leptons

Light: 
$$m_a^{} < m_\mu^{}, m_\tau^{}$$

#### Invisible:

- Neutral
- Feebly coupled (long-lived)

CLFV modes would then be 
$$\mu \to e a, \tau \to \mu a, \mu \to e \gamma a, \text{ etc.}$$

## Interesting interplay with cosmo/astro:

- DM candidate? (if long-lived enough)
- Bounds from star cooling/supernovae (if light and feeble enough)

LFV phenomenology

Why should *a* be light and feebly-coupled?

That's natural, if it is the (pseudo) Nambu-Goldstone boson (PNGB) of a broken global U(1), *aka* an axion-like particle (ALP)

| Example                           |         |                                                |
|-----------------------------------|---------|------------------------------------------------|
| Global symmetry:                  | PNGB:   | <u>Wilczek '82</u>                             |
| <ul> <li>Lepton Number</li> </ul> | Majoron | <u>Pilaftsis '93</u><br>Feng et al. '97        |
| • Peccei-Quinn                    | Axion   | <u>LC Goertz Redigolo</u><br>Zioglar Zupan (16 |
| • Flavour symmetry                | Familon | Di Luzio et al. '17, '19                       |
| •••                               |         |                                                |

Equivalent possibility: light Z' of a local U(1), e.g.  $L_i$ - $L_j$  (with  $g \ll 1$ )

Heeck '16



Where does *lepton flavour violation* come from?

- If lepton U(1) charges are flavour non-universal
   naturally flavour-violating couplings
- Alternatively, loop-induced flavour-violating couplings

Explicit examples at the end...

LFV decays into ALPs: model-independent approach

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left( C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right)$$

This generic Lagrangian induces 2-body LFV decays such as:

$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^3}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$
Feng et al. 97

Goal: constrain the effective LFV scales  $(F_{ij})$  using experimental data

- Which experiments?
- What are the future prospects?

 $\rightarrow$  D. Redigolo's talk

LFV phenomenology

Lepton-flavour-violating invisible ALPs



Decays mediated by dim-5 operators: much larger NP scales can be reached Essential interplay among  $\mu$  decays,  $\tau$  decays, and astrophysical bounds /

LFV phenomenology

- How generic is a PNGB with flavour-violating couplings to leptons?
- Can we test ALPs with LFV beyond stars?
- That is, how are FC and FV couplings related ( $F_{ee}$ ,  $F_{\mu e}$ , etc.) ?

To answer these questions, we need to consider specific models

## • LFV QCD axion:

QCD axion (DSFZ type) with leptons carrying non-universal PQ

• LFV axiflavon:

QCD axion obtained by identifying PQ = Froggatt-Nielsen U(1) (FV axion-quark couplings suppressed by an additional flavour SU(2))

## • Leptonic familon

PNGB from spontaneously broken Froggatt-Nielsen U(1) (acting on leptons only)

## • Majoron

spontaneously broken lepton number (in the context of low-energy seesaw)

#### LFV QCD axion



LFV phenomenology

## LFV QCD axion



Lorenzo Calibbi (Nankai)

LFV phenomenology

### Majoron

Spontaneous breaking of the lepton number:

$$\frac{1}{2}\lambda_N \sigma \bar{N}^c N, \quad \sigma = \frac{f_N + \hat{\sigma}}{\sqrt{2}} e^{iJ/f_N} \implies M_N = \lambda_N f_N / \sqrt{2}$$
PNGB: Majoron! Chikashige Mohapatra Peccei '80
Couplings to SM fermions:
$$J - \bigcap_{n_j} Z , \quad q, \ell \qquad n_j - \ell \qquad M_N = \frac{n_i}{\sqrt{2}} \int_{-\infty} Q , \ell \qquad n_j - \ell \qquad N_N = \frac{n_i}{\sqrt{2}} \int_{-\infty} Q , \ell \qquad N_N =$$

LFV phenomenology

#### Majoron

Type I seesaw: 
$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}\partial N - \left(Y_N\overline{M}\widetilde{\Phi}^{\dagger}L + \frac{1}{2}M_N\overline{N}N^c + \text{h.c.}\right)$$
  
 $\mathcal{L}$ -breaking term  
 $\mathcal{M}_{\nu} = \left(\begin{array}{ccc} 0 & Y_N^T v/\sqrt{2} \\ Y_N v/\sqrt{2} & M_N \end{array}\right) \xrightarrow{M_N \gg Y_N v} m_{\nu} = -\frac{v^2}{2}Y_N^T M_N^{-1}Y_N$ 

Spontaneous breaking of the lepton number:

$$\frac{1}{2}\lambda_N \sigma \bar{N}^c N, \quad \sigma = \frac{f_N + \hat{\sigma}}{\sqrt{2}} e^{iJ/f_N} \implies M_N = \lambda_N f_N / \sqrt{2}$$
PNGB: Majoron! Chikashige Mohapatra Peccei '80

Couplings to SM fermions:

$$\begin{split} C_{q_iq_j}^V &= 0\,, \qquad \qquad C_{q_iq_j}^A = -\frac{T_3^q}{16\pi^2} \delta_{ij} \operatorname{Tr} \left(Y_N Y_N^{\dagger}\right)\,, \\ C_{\ell_i\ell_j}^V &= \frac{1}{16\pi^2} \left(Y_N Y_N^{\dagger}\right)_{ij}\,, \qquad C_{\ell_i\ell_j}^A = \frac{1}{16\pi^2} \begin{bmatrix} \delta_{ij}}{2} \operatorname{Tr} \left(Y_N Y_N^{\dagger}\right) - (Y_N Y_N^{\dagger})_{ij} \end{bmatrix} \\ & \text{Generically flavour-violating, (V-A)} \qquad \begin{array}{c} \operatorname{Pilaftsis} \, {}^{94} \\ \operatorname{Garcia-Cely \,Heeck} \, {}^{17} \end{array}$$

LFV phenomenology

#### Majoron



Lepton number anomaly free: suppressed coupling to photons ( $E_{UV}=0$ )

$$\Gamma(a \to \gamma \gamma) = \frac{\alpha_{\rm em}^2 E_{\rm eff}^2}{64\pi^3} \frac{m_a^3}{f_a^2}, \qquad m_a \ll m_{\ell_i}: \ E_{\rm eff} \simeq E_{\rm UV} \qquad \mathcal{L}_{\rm eff} = E_{\rm UV} \frac{\alpha_{\rm em}}{4\pi} \frac{a}{f_a} F \tilde{F}$$

LFV phenomenology

#### Summary

CLFV observables among the cleanest and most stringent tests of physics beyond the Standard Model

Future CLFV can test new physics up to very large scales: of the order of  $10^7 - 10^8$  GeV

Still plenty of room also to discover (tau) LFV at a Tera Z (and complementarity with B-factory searches)

ALPs from non-universal global U(1)s (or due to loop effects) give rise to lepton-flavour-violating decays

We have huge room for improvement over old limits: next generation experiments may discover axions in muon decays!

# Grazie! Thanks! 谢谢!

## Additional slides

In the SM fermion masses, thus the *flavour sector*, stems from the Yukawa interactions:

$$-\mathcal{L}_Y = (Y_u)_{ij} \,\overline{Q}_{L\,i} \, u_{R\,j} \,\widetilde{\Phi} + (Y_d)_{ij} \,\overline{Q}_{L\,i} \, d_{R\,j} \,\Phi + (Y_e)_{ij} \,\overline{L}_{L\,i} \, e_{R\,j} \,\Phi + h.c.$$

Rotations to the fermion mass basis:

 $Y_f = V_f \hat{Y}_f W_f^{\dagger}, \quad f = u, d, e$ 

Unitary rotation matrices, couplings to photon and Z remain flavour-diagonal:

$$e \ \bar{f}\gamma_{\mu}fA^{\mu} \qquad (g_L \ \bar{f}_L\gamma_{\mu}f_L + g_R \ \bar{f}_R\gamma_{\mu}f_R)Z^{\mu}$$

Couplings to the Higgs are also flavour-conserving (aligned to the mass matrix):

$$\frac{m_f}{v}\,\bar{f}_L f_R\,h$$

No (tree-level) flavour-changing neutral currents

LFV phenomenology

#### Why no CLFV in the Standard Model?

In the SM fermion masses, thus the *flavour sector*, stems from the Yukawa interactions:

$$-\mathcal{L}_Y = (Y_u)_{ij} \,\overline{Q}_{L\,i} \, u_{R\,j} \,\widetilde{\Phi} + (Y_d)_{ij} \,\overline{Q}_{L\,i} \, d_{R\,j} \,\Phi + (Y_e)_{ij} \,\overline{L}_{L\,i} \, e_{R\,j} \,\Phi + h.c.$$

Rotations to the fermion mass basis:

 $Y_f = V_f \hat{Y}_f W_f^{\dagger}, \quad f = u, d, e$ 

Flavour violation occurs in charged currents only:

$$\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} \left( \overline{u}_L \gamma^{\mu} (V_u^{\dagger} V_d) d_L + \overline{\nu}_L \gamma^{\mu} (V_\nu^{\dagger} V_e) e_L \right) W_{\mu}^{+} + h.c.$$
$$V_{\rm CKM} \equiv V_u^{\dagger} V_d \qquad \qquad U_{\rm PMNS} \equiv V_{\nu}^{\dagger} V_e$$

However, if neutrinos are massless, we can choose:

$$V_{\nu} = V_e$$

No LFV ( $Y_e$  only 'direction' in the leptonic flavour space)

LFV phenomenology

The couplings of Z to leptons are protected by the SM gauge symmetry  $\rightarrow$  LFV effects must be proportional to the EW breaking:

$$\operatorname{BR}(Z \to \ell \ell') \sim \operatorname{BR}(Z \to \ell \ell) \times C_{\operatorname{NP}}^2 \left(\frac{v}{\Lambda_{\operatorname{NP}}}\right)^2$$

In the SM EFT, only 5 operators contribute at the tree level:

$$\begin{split} Q_{\Phi\ell}^{(1)} &= (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}') \\ Q_{eW} &= (\bar{\ell}_{L} \sigma^{\mu\nu} \ell_{R}') \tau_{I} \Phi W_{\mu\nu}^{I}, \qquad Q_{eB} = (\bar{\ell}_{L} \sigma^{\mu\nu} \ell_{R}') \Phi B_{\mu\nu} \\ \\ \hline BR \left( Z \to \ell_{i} \ell_{j} \right) &= \frac{m_{Z}}{12\pi\Gamma_{Z}} \left\{ \left| g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right|^{2} + \left| g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right|^{2} + \frac{m_{Z}^{2}}{2} \left( \left| \delta g_{TR}^{ij} \right|^{2} + \left| \delta g_{TL}^{ij} \right|^{2} \right) \right\} \\ \mathcal{L}_{\text{eff}}^{Z} &= \left[ \left( g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right) \left| \bar{\ell}_{i} \gamma^{\mu} P_{R} \ell_{j} + \left( g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right) \left| \bar{\ell}_{i} \gamma^{\mu} P_{L} \ell_{j} \right] Z_{\mu} + \left[ \delta g_{TR}^{ij} \left| \bar{\ell}_{i} \sigma^{\mu\nu} P_{R} \ell_{j} + g_{TL}^{ij} \left| \bar{\ell}_{i} \sigma^{\mu\nu} P_{L} \ell_{j} \right] Z_{\mu\nu} + h.c. \,, \end{split}$$

LFV phenomenology

The couplings of Z to leptons are protected by the SM gauge symmetry  $\rightarrow$  LFV effects must be proportional to the EW breaking:

$$\operatorname{BR}(Z \to \ell \ell') \sim \operatorname{BR}(Z \to \ell \ell) \times C_{\operatorname{NP}}^2 \left(\frac{v}{\Lambda_{\operatorname{NP}}}\right)^2$$

In the SM EFT, only 5 operators contribute at the tree level:

 $Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{I} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}'), \qquad Q_{\Phi e} = (\Phi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}')$  $Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell'_R) \tau_I \Phi W^I_{\mu\nu}, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell'_R) \Phi B_{\mu\nu}$  $\operatorname{BR}\left(Z \to \ell_i \ell_j\right) = \frac{m_Z}{12\pi\Gamma_Z} \left\{ \left| g_{VR} \delta_{ij} + \delta g_{VR}^{ij} \right|^2 + \left| g_{VL} \delta_{ij} + \delta g_{VL}^{ij} \right|^2 + \frac{m_Z^2}{2} \left( \left| \delta g_{TR}^{ij} \right|^2 + \left| \delta g_{TL}^{ij} \right|^2 \right) \right\}$  $\delta g_{VR}^{ij} = -\frac{ev^2}{2s_{\rm w}c_{\rm w}\Lambda^2} C_{\varphi e}^{ij}, \quad \delta g_{VL}^{ij} = -\frac{ev^2}{2s_{\rm w}c_{\rm w}\Lambda^2} \left( C_{\varphi \ell}^{(1)\,ij} + C_{\varphi \ell}^{(3)\,ij} \right),$  $\delta g_{TR}^{ij} = \delta g_{TL}^{ji*} = -\frac{v}{\sqrt{2}\Lambda^2} \left( s_{\rm w} C_{eB}^{ij} + c_{\rm w} C_{eW}^{ij} \right),$ 

LFV phenomenology

Z LFV in the SMEFT



LFV phenomenology



LHC di-lepton tails constrain  $\bar{c}c \,\ell_i \ell_j$  contact interactions up to  $\Lambda > 2-3$  TeV  $\Rightarrow$  Indirect LHC bounds (if EFT is valid):  $BR(J/\psi \rightarrow e\mu) < 10^{-11}, BR(J/\psi \rightarrow e\tau) < 6 \times 10^{-11}, BR(J/\psi \rightarrow \mu\tau) < 7 \times 10^{-11}$ Angelescu et al. 2002.05684

#### LFV phenomenology

Three ways of generating the Weinberg operator at the tree level:



$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}\partial N - \left(Y_N\overline{N}\widetilde{\Phi}^{\dagger}L + \frac{1}{2}M_N\overline{N}N^c + \text{h.c.}\right)$$

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & Y_N^T v / \sqrt{2} \\ Y_N v / \sqrt{2} & M_N \end{pmatrix} \implies m_{\nu} = -\frac{v^2}{2} Y_N^T M_N^{-1} Y_N$$

New contributions to CLFV processes:



Can we have large CLFV rates fulfilling with  $m_{\nu_i} \lesssim 0.1 \ {\rm eV}$  ?

LFV phenomenology

Naive expectation for RH neutrinos at the same scale:



But that's not (necessarily) the end of the story:

- Neutrino masses controlled by *L*-breaking dim-5 operator:
- CLFV controlled by *L*-conserving dim-6 operator:

rator:  $Y_N^T M_N^{-1} Y_N$  $Y_N^{\dagger} M_N^{-2} Y_N$ 

Broncano Gavela Jenkins '02

Can the dim-5 coefficient be small while the dim-6 one is large? Yes! If the lepton number is approximately conserved...

LFV phenomenology

Naive expectation for RH neutrinos at the same scale:



Observable effects possible for small breaking of lepton number, e.g.:

- Two almost degenerate RH neutrinos (pseudo-Dirac pair)
- Extended mass matrix (inverse seesaw, linear seesaw...)

$$\begin{split} \nu_L & N \ (L=1) \quad S \ (L=-1) \\ \mathcal{M}_{\nu} &= \begin{pmatrix} 0 & \frac{v}{\sqrt{2}} Y_N & 0 \\ \frac{v}{\sqrt{2}} Y_N & 0 & M_N \\ 0 & M_N & \mu \end{pmatrix} \implies m_{\nu} = \frac{v^2}{2} Y_N^T \frac{\mu}{M_N^2} Y_N \\ \mu \ll M_N \end{split}$$
 Mohapatra Valle '86

LFV phenomenology

#### Lorenzo Calibbi (Nankai)

Ibarra Molinaro Petcov '11



LFV phenomenology



LFV phenomenology

Type II
 Scalar SU(2) triplet (Y=1):
 
$$\Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$
 $\mathcal{L} = \mathcal{L}_{SM} + \operatorname{Tr} \left( D_{\mu} \Delta^{\dagger} \right) (D^{\mu} \Delta) - M_{\Delta}^2 \operatorname{Tr} \Delta^{\dagger} \Delta - \left( Y_{\Delta} L^T i \tau_2 \Delta L + \mu_{\Delta} \tilde{\Phi}^T i \tau_2 \Delta \tilde{\Phi} + \text{h.c.} \right)$ 
 $m_{\nu} = -2Y_{\Delta} \frac{v^2 \mu_{\Delta}}{M_{\Delta}^2}$ 

Concerning CLFV, the main difference wrt Type I is  $\mu \rightarrow eee$  at the tree level:



Abada et al. '07, '08

Present bound: 
$$Y_{\Delta} = \mathcal{O}(1) \implies M_{\Delta} \gtrsim 300 \text{ TeV}$$
  
Mu3e sensitivity:  $BR(\mu^+ \to e^+ e^+ e^-) \simeq 10^{-16} \implies M_{\Delta} \approx 3000 \text{ TeV}$ 



LFV phenomenology

Signal: monochromatic positron with

Differential decay rate: 
$$\frac{\mathrm{d}\Gamma(\ell_i \to \ell_j a)}{\mathrm{d}\cos\theta} = \frac{m_{\ell_i}^3}{32\pi F_{\ell_i\ell_j}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \left[1 + 2P_{\ell_j}\cos\theta \frac{C_{\ell_\ell \ell_j}^V C_{\ell_\ell \ell_j}^A}{(C_{\ell_\ell \ell_j}^V)^2 + (C_{\ell_\ell \ell_j}^A)^2}\right]$$
signal depends on the chirality of the couplings
Michel spectrum: 
$$\frac{\mathrm{d}^2\Gamma(\mu^+ \to e^+\nu_e\nu_\mu)}{\mathrm{d}x_e\,\mathrm{d}\cos\theta} \simeq \Gamma_\mu\left((3 - 2x_e) - P_\mu(2x_e - 1)\cos\theta\right)x_e^2 \qquad x_e = \frac{2p_e}{m_\mu}$$
And "surface" muons are highly polarized (produced by florn decays at rest on the surface of the production target)  $\rightarrow$  the SM background can be suppressed
$$m_a (\mathrm{MeV}) = \frac{105}{2.5} = 94. \quad 82. \quad 67. \quad 47. \quad 0.$$
the bkd goes to zero in the "forward" direction the "forward" direction the "forward" direction the "forward" direction the muon polarization.
$$\frac{\nu_\mu}{p_{\mu^+} + \frac{1}{2}} = \frac{1}{2} = \frac{1}$$

LFV phenomenology

## Future prospects: MEG II/Mu3e

Comparison in the case  $m_a \approx 0$ 

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left( C_{ij}^V \ \bar{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \bar{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right) \qquad F_{ij}^{V,A} \equiv \frac{2f_a}{C_{ij}^{V,A}} \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$

|                               |                       | Present bes                         | t limits <b>LC Redi</b> | golo Ziegler Zupan 2006.0479 |  |
|-------------------------------|-----------------------|-------------------------------------|-------------------------|------------------------------|--|
| Process                       | BR Limit              | Decay constant                      | Bound (GeV)             | Experiment                   |  |
| $\mu \to e  a$                | $2.6\times10^{-6*}$   | $F_{\mu e} \ (V  \mathrm{or}  A)$   | $4.8 \times 10^9$       | Jodidio at al. $[9]$         |  |
| $\mu \to e  a$                | $2.5\times10^{-6*}$   | $F_{\mu e} \ (V+A)$                 | $4.9 \times 10^9$       | Jodidio et al. $[9]$         |  |
| $\mu \to e  a$                | $5.8\times10^{-5*}$   | $F_{\mu e} \ (V - A)$               | $1.0 \times 10^9$       | TWIST $[10]$                 |  |
| $\mu \to e  a  \gamma$        | $1.1 \times 10^{-9*}$ | $F_{\mu e}$                         | $5.1 \times 10^{8\#}$   | Crystal Box [47]             |  |
| Expected future sensitivities |                       |                                     |                         |                              |  |
| Process                       | BR Sens.              | Decay constant                      | Sens. (GeV)             | Experiment                   |  |
| $\mu \to e  a$                | $7.2 \times 10^{-7*}$ | $F_{\mu e} (V \text{ or } A)$       | $9.2 \times 10^9$       | MEGII-fwd*                   |  |
| $\mu \to e  a$                | $7.2 \times 10^{-8*}$ | $F_{\mu e} (V \operatorname{or} A)$ | $2.9 	imes 10^{10}$     | $MEGII-fwd^{\star\star}$     |  |
| $\mu \to e  a$                | $7.3 \times 10^{-8*}$ | $F_{\mu e} \ (V  { m or}  A)$       | $2.9 	imes 10^{10}$     | Mu3e [42]                    |  |

What about mu to e conversion experiments?

LFV phenomenology