Belle II status and prospects for studies of neutral currents

New Frontiers in Lepton Flavor | PISA

Valerio Bertacchi * on behalf of Belle II collaboration

Pisa, 15 May 2023

* bertacchi@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Neutral current interest

- $b \rightarrow s$ transitions are **FCNC** \Rightarrow SM suppressed (forbidden at tree level) \Rightarrow sensitive to New Physics
- SM BR $\mathcal{O}(10^{-5} 10^{-7})$ with 10-30% uncertainty
- **Ratios**, asymmetries, angular distributions can be used:
 - to improve precision
 - to access Beyond the Standard Model (BSM) coupling properties

Belle II performance

- and low fake rate

Momentum **resolution**

B-Factory basics

- $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV} \simeq 2m_B \Rightarrow$ constrained kinematics
- Hermetic detector \Rightarrow complete event reconstruction

- Asymmetric collider \Rightarrow **Boost of center-of-mass**
- Excellent vertexing performance ($\sigma \sim 15 \ \mu m$)

- coherent *BB* pairs production
- Excellent flavour tagging performance

B-tagging for missing energy channels

In channels with **missing energy** \Rightarrow use of the the **Rest of the Event (ROE)** information:

Step 1: Reconstruction of the partner $B(B_{tag})$ using wellknown channels

- Hadronic tagging: lower efficiency, but full tag reconstruction
- Semileptonic Tagging: higher efficiency, but lower purity

Step 2: Using the $\Upsilon(4S)$ constraint, infer the information on the second B (B_{sig}): flavour, charge and kinematic constraints

• **Inclusive Tagging:** signal reconstruction first, and then use of the ROE+ $\Upsilon(4S)$ constraint to add information to the signal

Full Event Interpretation (FEI)

- MVA based B-tagging algorithm
- hierarchical approach to reconstruct $\mathcal{O}(10^4)$ decay chains
- $\varepsilon_{\rm had} \simeq 0.5\,\%$, $\varepsilon_{\rm SL} \simeq 2\,\%$

Neutral current opportunity

- Belle II has similar (and good!) performance both in electron and muons
 - Opportunity to LFU test and LFV searches (eg. $R_{K^{(*)}}, B \rightarrow K\ell\ell'$)
- Some of the channels in Belle II will become **competitive with few ab**⁻¹, so now Belle II is statistically limited ($\mathscr{L}_{int}^{Belle II} = 362 \text{ fb}^{-1}$ at $\Upsilon(4s)$)
- However, several unique opportunities in Belle II (**radiative**, multiple **neutrinos**) given:
 - Almost full hermetic detector
 - $\Upsilon(4S)$ constraint
 - Relatively low combinatorial background

Analyses outline

This talk will cover:

sector	channel	achieved results?
Dadiativo	fully inclusive $B \to X_s \gamma$	189 fb ⁻¹
Radiative	$B \to K^* \gamma$	63 fb ⁻¹
Multi-neutrinos	$B^+ \to K^+ \nu \bar{\nu}$	63 fb ⁻¹
(Towards) LFU violation	$B \to J/\psi (\to \ell \ell) K$	189 fb ⁻¹
	$B \to K^* \ell \ell$	189 fb-1
	$B^0 \to K^{*0} \tau \tau$	prospects only
	$B \to K^{(*)} \ell \ell'$	experimental status only

Analyses outline

This talk will cover:

Fully inclusive $B \to X_s \gamma$

- Motivation:
 - $b \rightarrow s$ radiative FCNC transition, BR large ($\mathcal{O}(10^{-4})$)
 - Precise SM predictions (5% uncertainty) [JHEP, 06 (2020), 175]
 - allow to give input for $|V_{ub}|$ and b-quark mass [PRL, 127 (2021), 102001]
 - Inclusive measurement: no theory uncertainty from form-factors
- Reconstruction:
 - Hadronic B tagging
 - Select the γ with highest energy in the signal side, with $E_{\gamma} > 1.4~{
 m GeV}$
- Background suppression: main challenge of the analysis
 - MVA to veto photons consistent with $\pi^0 o \gamma\gamma$ and $\eta o \gamma\gamma$ decays
 - BDT for $e^+e^- \rightarrow q\overline{q}$ bkg with features not correlated with E_{γ} and M_{bc}

Fully inclusive $B \rightarrow X_{\gamma}$

- Fit of tag-side M_{bc} in bins of E_{γ}
 - allow to remove tag-side *BB* bkg
- Residual background removal using **MC** information (mostly X_d)
 - $1.4 \text{ GeV} < E_{\gamma} < 1.8 \text{ GeV}$ region used to **validate** fit and selection
 - $1.8 \text{ GeV} < E_{\gamma} < 2.7 \text{ GeV}$: signal region
- Yields integrated in multiple bins to obtain the **energy spectrum** (1.8., 2.0, 2.1 GeV threshold)
- Leading **systematics** from data/MC mismodellig in the fit and bkg suppression

E^B_{γ} threshold [GeV]	$\mathcal{B}(B \rightarrow X_{s}\gamma)$ [10 ⁻⁴]	Experiment	
1.8	$3.54 \pm 0.78 \pm 0.83$	Belle II	
2.0	$3.06 \pm 0.56 \pm 0.47$	Belle II	
1.9	$3.66 \pm 0.85 \pm 0.60$	BaBar	

[PRD 91 (2015) 5, 052004]

[arXiv:2210.10220]

vith hadronic ag neasurement

Inclusive $B \rightarrow X_{\gamma}$: perspectives

- Systematics trend:
 - lower threshold \Rightarrow higher bkg
 - higher threshold \Rightarrow higher theoretical uncertainties

Lower E^B_{γ} threshold	Statistical uncertainty			Baseline (improved)	
,	$1 \mathrm{ab}^{-1}$	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	syst. uncertainty
1.4 GeV	10.7%	6.4%	4.7%	2.2%	10.3%~(5.2%)
$1.6 \mathrm{GeV}$	9.9%	6.1%	4.5%	2.1%	8.5%~(4.2%)
$1.8 \mathrm{GeV}$	9.3%	5.7%	4.2%	2.0%	6.5% $(3.2%)$
$2.0 \mathrm{GeV}$	8.3%	5.1%	3.8%	1.7%	3.7% (1.8%)

- Improved scenario = improved $\pi^0 \rightarrow \gamma \gamma$ veto modelling
- Other possible improvements: different tagging approaches

trade off

• In the long term planning **crucial to use ratios/asymmetries** to cancel systematics

11

Analyses outline

This talk will cover:

- Motivation:
 - Cleanest exclusive mode of the $B \rightarrow X_s \gamma$ sector
 - measurement of the BR as a first step for asymmetries measurements
- Reconstruction:

- $K^{*+}(892) \to K^{+}\pi^{0}, K^{0}_{S}\pi^{+} \text{ and } K^{*0}(892) \to K^{0}_{S}\pi^{+}, K^{+}\pi^{0}$

- reconstruct only 1 B of the event
- Photon bkg suppression:
 - **2-body decay**: $E_{\gamma}^* \approx m_B/2 \approx 2.5 \text{ GeV} \Rightarrow \text{cut on photon energy}$
 - Veto on γ from π^0 and η
- *K** bkg suppression

 - ΔE discriminate between signal $K^*(892)$ and **other resonance** like $K^{*+}(1410)$
- MVA to suppress $e^+e^- \rightarrow q\overline{q}$ background

[arXiv: 2110.08219]

- Helicity angle of the Kaon from K^* follow $\sin^2 \theta_{hel}$, while misreconstructed K^* peak at $\cos \theta \approx \pm 1$

Fit to ΔE , including peaking bkg from other resonances

Mode	Signal yield	$\mathcal{B}_{\text{meas}}$ $[10^{-5}]$
$B^0 \to K^{*0} [K^+ \pi^-] \gamma$	454 ± 28	$4.5\pm0.3\pm0.2$
$B^0 \to K^{*0} [K^0_{\rm S} \pi^0] \gamma$	50 ± 10	$4.4\pm0.9\pm0.6$
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	169 ± 18	$5.0\pm0.5\pm0.4$
$B^+ \to K^{*+} [K^0_{\rm S} \pi^+] \gamma$	160 ± 17	$5.4\pm0.6\pm0.4$

consistent with world average

- Statistically limited
- Leading systematics from π^0 and η veto (plus MVA bkg) suppression and misreconstructed signal)

world best by Belle with 3% precision [PRL 119 (2017), 191802]

(a) $B^0 \to K^{*0}[K^+\pi^-]\gamma$

$B \rightarrow K^* \gamma$: perspectives

Measurement of BR is the first step toward the measurement of **asymmetries**:

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)} \qquad \Delta_{0+} =$$

- on contrary of the BRs, they do not suffer of form-factor related uncertainties
- Also photon **polarization** (left in SM, right in BSM) is a future target
- Extrapolation using Belle results ($O(10^{-2})$ precision)

Observable	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	Systematic uncertainty
$\Delta_{0+}(B \to K^* \gamma)$	1.3%	0.6%	0.4%	0.2%	1.2%
$A_{CP}(B^0 \to K^{*0}\gamma)$	1.4%	0.6%	0.5%	0.2%	0.2%
$A_{CP}(B^+ \to K^{*+}\gamma)$	1.9%	0.9%	0.6%	0.3%	0.2%
$\Delta A_{CP}(B \to K^* \gamma)$	2.4%	1.1%	0.7%	0.3%	0.3%

[arXiv:2207.06307]

 $\frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$

 3.1σ evidence of isospin violation by Belle [PRL 119 (2017), 191802]

Analyses outline

This talk will cover:

$\rightarrow K^+ \nu \bar{\nu}$

- Motivation:
 - BR predicted ~ 4.6×10^{-6} [Prog. Part. Nucl. Phys. 92(2017), 50] main uncertainty from $B \rightarrow K$ form factor
 - no charged leptons \Rightarrow Lower theoretical uncertainties
 - **BSM amplitudes** can increase O(50%) the BR
 - Not yet observed! **Unique** opportunity in Belle II
- Reconstruction:
 - inclusive tagging
 - K^+ = highest p_T track, ROE information
- Bkg: **2 BDT in cascade** to exploit the event information and suppress the bkg
 - main variables: event shape, kinematics, vertexing variables
- Fit: performed in (p_T^K, BDT_2) in signal region and 3 control regions (lower BDT values)
- control sample: $B^+ \to J/\psi (\to \mu\mu) K^+$
 - ignoring muons (to mimic $\nu \overline{\nu}$) and p_K replaced from MC

[Phys.Rev.Lett. 127 (2021) 18, 181802]

$\rightarrow K^+ \nu \bar{\nu}$

- Results:
 - No signal observed \Rightarrow Upper limit
 - signal strength compatible with SM prediction at 1σ or bkg-only at 1.3σ
- Inclusive tagging ($\varepsilon = 4.3\%$) \Rightarrow x3.5 better of hadronic tag, 20% better of SL tag
- Statistically limited
- Leading systematic: bkg normalization

[Phys.Rev.Lett. 127 (2021) 18, 181802]

$B^+ \rightarrow K^+ \nu \bar{\nu} - perspectives$

Uncertainties on BR(meas)/BR(SM)

$$\begin{array}{c|c} \mbox{Decay} & 1\,\mbox{ab}^{-1} \\ \hline B^+ \to K^+ \nu \bar{\nu} & 0.55 \ (0.37) & 0 \\ B^0 \to K^0_{\rm S} \nu \bar{\nu} & 2.06 \ (1.37) & 1 \\ B^+ \to K^{*+} \nu \bar{\nu} & 2.04 \ (1.45) & 1 \\ B^0 \to K^{*0} \nu \bar{\nu} & 1.08 \ (0.72) & 0 \\ \hline \end{array}$$

- Projection based on published+MC study
- baseline (improved) assume current scenario (+50% efficiency with same bkg)
- Improvement coming from **extra tagging** scenario (semileptonic, hadronic)
- with 5 ab^{-1} we can achieve 5σ signal on $B^+ \to K^+ \nu \overline{\nu}$

|arXiv:2207.06307|

$5{ m ab}^{-1}$	$10 \mathrm{ab}^{-1}$	$50{ m ab}^{-1}$
.28(0.19)	0.21(0.14)	0.11(0.08)
.31 (0.87)	1.05(0.70)	0.59(0.40)
.06(0.75)	0.83 (0.59)	0.53(0.38)
.60(0.40)	0.49(0.33)	0.34(0.23)

19

Analyses outline

This talk will cover:

Towards LFU test: $B^{0,+} \to J/\psi(\to \ell \ell) K_c^{0,+}$

• actually $b \rightarrow c$ transition: **no sensitivity to BSM** amplitudes expected

Expected
$$R_K(J/\psi) = \frac{\mathscr{B}(B \to J/\psi(\mu^+\mu^-))}{\mathscr{B}(B \to J/\psi(e^+e^-))}$$

- Used as a **control sample** to validate $B \to K^{(*)}\ell\ell$ analysis
- Reconstructed with $K^+, K^0_S, \ell' = e, \mu$
- Fit: $(\Delta E, M_{bc})$

 $R_{K^+}(J/\psi) = 1.009 \pm 0.022 \pm 0.008,$ $R_{K^0}\left(J/\psi
ight) = 1.042 \pm 0.042 \pm 0.008,$

• Systematic uncertainty driven by **Lepton ID**, and below 1% (smaller than Belle)

[arXiv:2207.11275]

Agreement with 1, satisfactory precision

Analyses outline

This talk will cover:

sector	
Radiative	full B
	B
Multi-neutrinos	B^{-}
(Towards) LFU violation	$B \to J/\psi$
	<i>B</i> -
	B ⁰
	B
	1

Towards LFU test: $B \rightarrow K^* \ell \ell$

- Challenge: low BR \Rightarrow statistically limited
- Reconstruction: $K^{*0} \to K^+ \pi^-$, $K^{*+} \to K^+ \pi^0$, $K^{*+} \to K^0_S \pi^+$
- Bkg suppression:
 - BDT (for $ee \rightarrow q\overline{q}, B\overline{B}...$)
 - veto on $M(J/\psi, \psi(2S) \to \ell\ell)$
 - veto on $B \rightarrow K^* \gamma : M(e^+ e^-) > 0.14 \text{ GeV}$
- Fit to $(M_{bc}, \Delta E)$ distribution
- Similar performance for electrons and muons

Towards LFU test: $B \rightarrow K^* \ell \ell$

$$\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31 \pm^{+0.08}_{-0.07}) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$$

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30 \pm^{+0.08}_{-0.07}) \times 10^{-6}.$$

- Statistically limited
- Systematic uncertainty subleading, and driven by particle ID

Ground ready for more data for $R(K^{(*)})$ measurement

 $(1.06 \pm 0.09) \times 10^{-6}$ W.a. (1.19 ± 0.20) x 10⁻⁶ $(1.05 \pm 0.10) \times 10^{-6}$

Analyses outline

This talk will cover:

sector	channel	achieved results?
Dadiativa	fully inclusive $B \to X_s \gamma$	189 fb-1
Radiative	$B \to K^* \gamma$	63 fb ⁻¹
Multi-neutrinos	$B^+ \to K^+ \nu \bar{\nu}$	63 fb ⁻¹
(Towards) LFU violation	$B \to J/\psi(\to \ell\ell)K$	189 fb ⁻¹
	$B \to K^* \ell \ell$	189 fb ⁻¹
	$B^0 o K^{*0} au au$	prospects only
	$B \to K^{(*)} \ell \ell'$	experimental status only

$\rightarrow K^{*0}\tau^+\tau^-$ - perspectives B^0

- SM BR~ $\mathcal{O}(10^{-7}) \Rightarrow$ extremely sensitive to New Physics: **BSM may** enhance the rate $\sim 10^3$ SM BR.
- **Complementary** to $B \to K^{(*)} \ell \ell$, and experimentally UL only $\mathcal{O}(10^{-3})$ 90% CL

	$\mathcal{B}(B^0 \to K^{*0})$	$(\tau \tau)$ (had tag)
ab^{-1}	"Baseline" scenario	"Improved"
1	$< 3.2 \times 10^{-3}$	$< 1.2 \times$
5	$< 2.0 \times 10^{-3}$	$< 6.8 \times$
10	$< 1.8 \times 10^{-3}$	$< 6.5 \times$
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times$

- baseline: Belle analysis (hadronic tag, $\tau \rightarrow \ell \nu \nu$) [arXiv:2110.03871]
- improved: extra tag, $\tau \rightarrow \pi \nu$
- Additional improvement including $B \to K^{(*)+} \tau \tau$

[arXiv:2207.06307]

Analyses outline

This talk will cover:

sector	
Radiative	full B
	B
Multi-neutrinos	<i>B</i> ⁻
(Towards) LFU violation	$B \to J/\gamma$
	<i>B</i> -
	<i>B</i> ⁰
	B

$B \rightarrow K \tau \ell$ experimental methods

- B-tagging (hadronic or semileptonic)
- Reconstruct B_{tag} and K, ℓ tracks
- au mass:

Summary

- Current BR measurements in radiative decays are on par with world best measurements
 - few ab⁻¹ allow to explore **asymmetries** and improve the NP sensitivity
- $B \to K \nu \overline{\nu}$ is a **unique opportunity** for Belle II, few ab⁻¹ allow to observe the decay or access to NP
- ground for rare decay searches:
 - strongly SM suppressed: $B \to K^{(*)} \tau \tau$
 - **LFV** decays: $B \to K^{(*)}\ell\ell'$

• Despite $R(K^{(*)})$ anomaly disappeared, $B \to K^* \ell \ell$ measurements prepared the

Data taking will resume from winter 2023-24, with an upgraded detector and improved collider, aiming for more luminosity!

Thank you for your attention!

Valerio Bertacchi - bertacchi@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

BACKUP SLIDES

Belle II experiment at SuperKEKB collider

SuperKEKB

• Energy-asymmetric e^+e^- collider

•
$$\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$$

- Successor of KEKB (1999-2010, KEK, Japan)
- Target peak luminosity: $6 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x 30 of KEKB)

 $250 \,\mu m(Z) \times 10 \,\mu m(X) \times 50 \,nm(Y)$

Belle II

[Belle II Technical Design Report, arXiv:1011.0352]

Belle II experiment at SuperKEKB collider

.2^{s-1}]

[x10³⁵cm

Luminosity

Peak

SuperKEKB

• Energy-asymmetric e^+e^- collider

• $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$

Current Status

- complete detector data taking started in 2019
- Current peak luminosity $4.7 \cdot 10^{34} \ cm^{-2} s^{-1}$ (reached the 22/06/2022)
- current integrated luminosity: $\sim 424 \text{ fb}^{-1}$ (~Babar~0.5 Belle)
 - ~ 362 fb^{-1} at the $\Upsilon(4S)$
- Currently in Long Shutdown 1 (LS1), restart in Winter 2023-24

Belle II

Long shutdown 1 plans

Long shutdown 1 (LS1): data-taking sopped in July 2022

LS1 activities:

- replacement of the **beam-pipe**
- replacement of PMT of central PID detector (**TOP**)
- installation of 2-layer of pixel detector
 - shipped to KEK mid-March
 - final test scheduled in April
- improvement of data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCle40)
- replacement of aging components
- additional shielding against beam backgrounds
- accelerator improvements: injection, non linear-collimators, monitoring

On track to resume data taking in winter!

B-Factory idea

 $m_{\Upsilon(4S)} \simeq 10.58 \,\mathrm{GeV}/c^2$

 $\tau_B \simeq 1.5 \times 10^{-12} \,\mathrm{s}$

 $m_B \simeq 5.279 \ {
m GeV}/c^2$

- Asymmetric collider e^+e^- , $E_{cm} = m(\Upsilon(4S)) = 10.58$ GeV \Rightarrow coherent $B\overline{B}$ pairs
- Boost of center-of-mass ($\beta\gamma = 0.28$) \Rightarrow measure of Δz
- High luminosity \Rightarrow precision measurements

B=∢ba

• Hermetic detector, high precision in vertexing \Rightarrow closed kinematics

 l_1

$e^+e^- ightarrow$	Cross section
$\Upsilon(4S)$	1.05 ± 0.1
$c\overline{c}$	1.30
$s\overline{s}$	0.38
$u\overline{u}$	1.61
$d\overline{d}$	0.40
$ au^+ au^-(\gamma)$	0.919
$\mu^+\mu^-(\gamma)$	1.148
$e^+e^-(\gamma)$	300 ± 3

B-Factory variables

•
$$\Delta E = E_B^* - E_{beam}^*$$

• Expected $\Delta E \simeq 0$ for properly reconstructed signal

• Expected $M_{bc} \simeq m_B$ for properly reconstructed signal

$$I_{bc} = \sqrt{E_{\text{beam}}^{*2} - \vec{p}_B^{*2}}$$

- 2 variable mostly uncorrelated
- tag-signal relation:

•
$$E_{B_{\text{tag}}}^* = E_{B_{\text{sig}}}^* = \sqrt{s/2}$$
,

•
$$\vec{p}_{B_{\text{tag}}}^* = -\vec{p}_{B_{\text{sig}}}^*$$

Fully inclusive $B \rightarrow X_s \gamma$ - extra info

- Photon veto check the compatibility of single- γ events with π^0 and η decays using:
 - invariant mass, angular distibutions, energy, helicity...
- Unfolding: bin-by-bin multiplicative factor based on signal model (Nexp/Ngen)

$$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}^B} = \frac{\mathcal{U}_i \times (N_i^{\text{DATA}} - N_i^{\text{BKG, MC}} - N_i^{B \to X_d \gamma})}{\varepsilon_i \times N_B},$$

- Signal MC: BTOXGAMMA with the addition of $B \to K^* \gamma$

E^B_γ [GeV]	$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}^B} (10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Backgroun modelling
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49
2.0 - 2.1	0.57	0.31	0.25	0.17	0.06	0.17
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11
2.2 - 2.3	0.41	0.22	0.10	0.07	0.05	0.04
2.3-2.4	0.48	0.22	0.10	0.06	0.06	0.02
2.4-2.5	0.75	0.19	0.14	0.04	0.09	0.02
2.5 - 2.6	0.71	0.13	0.10	0.02	0.09	0.00

 $B \rightarrow K^* \gamma$ - extra info

Table III. Relative systematic uncertainties (in %) for the branching fraction measurement.

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K^0_{\rm S}\pi^0]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{ m S}$
No. of $B\overline{B}$ events	1.6	1.6	1.6	1.6
Photon selection	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$+0.2 \\ -0.4$
π^0/η veto	3.8	3.8	3.8	3.8
Pion identification	0.6			0.6
Kaon identification	0.8		0.8	
$K_{\rm S}^0$ reconstruction		2.4		2.4
π^0 selection		3.4	3.4	
Tracking efficiency	1.4	1.4	0.7	1.4
MVA selection	2.0	6.0	2.0	4.0
MC statistics	0.2	0.5	0.3	0.3
PDF shape parameters	1.0	$^{+7.4}_{-5.4}$	$^{+2.4}_{-3.1}$	+0.6 -1.4
Misreconstructed signal	1.5	$+\frac{6.8}{-7.2}$	$^{+4.7}_{-5.9}$	+2.5 -3.1
Total	5.3	$^{+13.2}_{-12.4}$	$^{+7.9}_{-8.9}$	+7.0 -7.3

helicity angle definition: angle between the K from K^{*} and the B, in the $K\pi$ rest frame

 $B \rightarrow K^* \ell \ell \operatorname{extrainfo}$

systematic uncertainties

Source	Systema
Kaon identification	0.
Pion identification	2.
Muon identification	$+1 \\ -0$
Electron identification	+0 -0
K_S^0 identification	2.
π^{0} identification	3.
Tracking	1.2 –
MVA selection	1.3 -
Simulated sample size	< (
Signal cross feed	< 2
Signal PDF shape	0.5 -
$\mathcal{B}(\Upsilon(4S) \to B^+B^-)[(\mathcal{B}(\Upsilon(4S) \to B^0\overline{B^0}))$	1.
Number of $B\overline{B}$ pairs	2.
Total	+6

Yields: $\mu: 22 \pm 6$ *e*: 18 ± 6 $\ell: 38 \pm 9$

 $B^{0,+} \to J/\psi(\to \ell\ell)K^{0,+}_S - \text{extra info}$

Table III. Relative systematic uncertainties (%) on $\mathcal{B}(B \to J/\psi K)$, $R_K(J/\psi)$, and absolute uncertainty on $A_I (B \to J/\psi K)$.

Source	$\mathcal{B}\left(B \to KJ/\psi\right)$			R_K		A_I		
	K^+	K^+	K_S^0	K_S^0	K^+	K^0		
	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\mu^+\mu^-$			e^+e^-	$\mu^+\mu^-$
Number of $B\overline{B}$ events	1.5	1.5	1.5	1.5	_	_	_	_
PDF shape	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1
Electron identification	0.6	_	0.6	_	0.6	0.6	_	_
Muon identification	_	0.4	_	0.4	0.4	0.4	_	_
Kaon identification	0.2	0.2	_	_	_	_	0.1	0.1
K_S^0 reconstruction	_	_	3.0	3.0	_	_	1.5	1.5
Tracking efficiency	0.9	0.9	1.2	1.2	_	_	0.4	0.4
Simulation sample size	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\Upsilon(4S)$ branching fraction	2.6	2.6	2.6	2.6	_	_	2.6	2.6
(au_{B^+}/ au_{B^0})	_	_	_	_	_	_	0.2	0.2
Total	3.2	3.2	4.4	4.4	0.8	0.8	3.0	3.0

 $B^+ \rightarrow K^+ \nu \bar{\nu}$ extra information

$R(K^*)$ prospects

- Given recent LHCb result, there is an excellent agreement with SM
- Currently Belle II is not competitive
- Uncertainties dominated by statistics

Belle II performance

[From D. Tonelli]

