

Measurements of $b \rightarrow s\ell\ell$ decays at LHCb

Renato Quagliani (EPFL) on behalf of the LHCb collaboration

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

15 May 2023

◆ No direct evidence of New Physics (NP) so far

- Indirect searches/exclusion of generic NP models in rare b-decays very powerful beyond current direct searches reach
- $\bullet b \to s\ell\ell \ (B \to M\ell\ell)$: a powerful laboratory to hunt NP
 - $\mathscr{B} \sim 10^{-6}$ in the Standard Model (SM)
 - ► NP can affect modify 1.Decay rates
 - 2.Angular distributions
- ◆ Experimental measurement interpreted through an effective field theory
- talk)

Renato Quagliani

Introduction

Renato Quagliani

Rare b-decays and $b \to s\ell^+\ell^-$

 $b \rightarrow s\ell\ell$

Branching

fractions

 $b \rightarrow s\ell\ell$

Angular

observables

Theoretical uncertainty (e, μ, τ)

Experimental challenges

Renato Quagliani

Exploit large $\sigma_{pp \to b\overline{b}, c\overline{c}}$ in $\eta \in [2,5]$ at LHC

Run1 :

$$\int_{2011}^{2012} \mathscr{L} = 3 \text{fb}^{-1}, \ \sqrt{s} = 7 - 8 \text{TeV}$$

Run2: **c** 2018 $\mathscr{L} = 6 \mathrm{fb}^{-1}, \ \sqrt{s} = 13 \mathrm{TeV}$ J_{2015}

У 🛉	/
5m	
Vertex Locator RICH1	
Tracker Turicen	i Si

LHCb detector

$$d\mathscr{B}(b \to s\mu\mu)/dq^{2}$$

$$b \to s\ell\ell$$

$$b \to s\ell\ell$$

$$b \to s\ell\ell$$

$$Angular$$

$$observables$$

$$Theoretical uncertainty (e,\mu)$$

Experimental challenges

Latest $b \rightarrow s\mu\mu$ differential decay rates at LHCb

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

$\langle M|(\ldots)|B\rangle$ in decay amplitude parameterised by 3(7) form factors for spin 0(1) final state

Other $b \rightarrow s\mu\mu$ differential decay rates at LHCb

Renato Quagliani

Other $b \rightarrow s\mu\mu$ differential decay rates at LHCb

Renato Quagliani

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

$b \rightarrow s\ell\ell$ measurements: angular analyses

kinematic structure \rightarrow characterise NP

New frontiers in Lepton Flavor (Pisa)

11

 $\bullet B \to V \mu^+ \mu^-$: vector in final state has rich kinematic structure \rightarrow characterise NP • Described by 3 angles and q^2

Fit angular spectrum in different q^2 bins

♦ 8 angular coefficients sensitive to NP

- F_L fraction of longitudinal polarisation
- A_{FB} forward backward asymmetry
- \blacktriangleright S_i : 6-independent angular coefficients

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Angular $b \rightarrow s\mu\mu$ analyses

$$\cos^{2} \theta_{K} + \frac{1}{4} (1 - F_{L}) \sin^{2} \theta_{K} \cos 2\theta_{\ell}$$

$$\theta_{\ell} + S_{3} \sin^{2} \theta_{K} \sin^{2} \theta_{\ell} \cos 2\phi$$

$$\theta_{\ell} \cos \phi + S_{5} \sin 2\theta_{K} \sin \theta_{\ell} \cos \phi$$

$$\cos \theta_{\ell} + S_{7} \sin 2\theta_{K} \sin \theta_{\ell} \sin \phi$$

$$\theta_{\ell} \sin \phi + S_{9} \sin^{2} \theta_{K} \sin^{2} \theta_{\ell} \sin 2\phi$$

Optimised variables to

reduce form factors

uncertainties

Descotes-Genon et al arXiv:1407.8526 Khodjamirian et al arXiv:1006.4945

Renato Quagliani

Angular $b \rightarrow s\mu\mu$ analyses

Deviations are coherent and significant when interpreted as modified vector coupling C_9 • σ_{th} under scrutiny (charm loops) in SM C_9 Full Run2 still to exploit

at LHCb in K^{*0} mode

► Towards a Run1+2 results across LHC collaborations, waiting for BelleII

Renato Quagliani

Angular $b \rightarrow s\mu\mu$ analyses

Vector coupling C_9

- Deviations are coherent and significant when interpreted as modified vector coupling C_9 • σ_{th} under scrutiny (charm loops)
- Full Run2 still to exploit at LHCb in K^{*0} mode

$bs(d) \rightarrow \ell\ell$ measurements: pure leptonic

Branching

fractions

Angular observables

Theoretical uncertainty (e, μ, τ)

Experimental challenges

<u>Renato Quagliani</u>

The golden $B \rightarrow \mu \mu$ decay

(tree)

\blacktriangleright FCNC process + helicity suppressed : 3

$$\mathcal{B}(B_q^0 \to \mu^+ \mu^-)_{\rm SM} = \frac{\tau_{B_q} G_F^4 M_W^4 \sin^4 \theta_W}{8\pi^5} |C_{10}^{\rm SM} v_{tb} V_{tq}^*|^2 f_{B_q}^2 m_{B_q} m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_q}^2}} \frac{1}{1 - y_q} \qquad q = d, s$$

Single Wilson
$$f_{B_q} \text{ known at } 0.5\% \text{ [PRD 98 (2019) 074512]}$$

Clean predictions in SM (largest source)

 $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = (3.66 \pm 0.14) \times 10^{-9}$ $\mathscr{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} = (1.03 \pm 0.05) \times 10^{-10}$ (*) $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)_{V_{cb}-\text{independent estimate}} : (3.78^{+0.15}_{-0.10}) \times 10^{-9}$ Renato Quagliani

$$\mathscr{B}(B_s \to \mu\mu) \sim 10^{-9}$$

- Sensitive to scalar/ pseudo-scalar couplings
- Extended Higgs boson sectors

A golden channel for all LHC experiments (ATLAS/CMS/LHCb)

from
$$|V_{cb}|$$
 inclusive (*)

[JHEP 10 (2019) 232]

16

$> CMS \text{ compatible with SM, better/equal sensitivity than <math>\mathbb{E}^{B} = \mathbb{E}^{B} = \mathbb{E$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = [0.37^{+0.75}_{-0.67} \text{ (stat)} ^{+0.08}_{-0.09} \text{ (syst)}] \times 10^{-10}.$

First observation on $B^0 \rightarrow \mu\mu$ still to do, also $b \rightarrow \mu \mu \gamma$ in full $m(\mu\mu)$ range

CMS UL

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10}$ at 95% CL,

LHCb UL

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$ at 95% CL,

• More data, challenges from $B \rightarrow hh$ backgrounds

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 2.0 \times 10^{-9}$ at 95% CL, for $m(\mu\mu) > 4.9 \text{GeV}$

Direct search on-going

The golden $B \rightarrow \mu\mu$ decay status

July 9, 2022

New frontiers in Lepton Flavor (Pisa)

17

Beyond $b \rightarrow \mu\mu$, other fully leptonic decays at LHCb

200

Branching

fractions

Angular

New frontiers in Lepton Flavor (Pisa)

Renato Quagliani

$b \rightarrow s\ell\ell$ measurements: LFU tests

Lepton Flavour Universality (LFU) tests in $b \to s\ell^+\ell^-$ (late 2022)

◆ Status late 2022 showed an intriguing pattern of tension to SM

- $\Rightarrow R_X$ ratio extremely well predicted in SM
 - ► Cancellation of hadronic uncertainties at 10⁻⁴
 - $\mathcal{O}(1\%)$ QED correction [Eur.Phys.J.C 76 (2016) 8]
 - Statistically limited

Any departure from unity is a clear sign of New Physics

(*) Measurements from Belle not shown (larger statistical uncertainties) New frontiers in Lepton Flavor (Pisa)

Lepton Flavour Universality (LFU) tests in $b \to s\ell^+\ell^-$ (today)

- ♦ Now: agreement to SM driven by latest <u>arXiv:2212.09153</u> LHCb measurement arXiv:2212.09152
 - ◆ Re-analysis of $R_K q^2 \in [1.1,6] \, GeV^2/c^4$
 - New $R_K q^2 \in [0.1, 1.1] \, GeV^2/c^4$
 - ◆ 3 → 9 fb⁻¹ update of $R_{\kappa^{*0}}$
- ✦ Main updates on analysis
 - ♦ Selection revised
 - ♦ Simultaneous approach to measurement
 - ◆ Inclusion of additional backgrounds from misidentification of electrons
 - ♦ Orthogonal choices for fit, efficiencies and selection where possible to previous analyses

LHCb only (2023)

(*) Measurements from Belle not shown (larger statistical uncertainties) New frontiers in Lepton Flavor (Pisa)

Challenges in LFU tests: electrons and energy losses

Renato Quagliani

Wider fit range than muons

- more background,
- more sensitive to peaking structures
- lineshapes are brem-dependent

Latest lepton flavour universality test in $b \to s\ell^+\ell^-$ at LHCb

• Full LHCb dataset (9 fb⁻¹), simultaneous measurement of $R_K \& R_{K^*}$ $\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)} \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2$ $J\!/\psi(1S)$

$$R_{K,K^*}(q_a^2, q_b^2) = \frac{d_a}{\int_{q_a^2}^{q_b^2} \frac{d\Gamma(B^{(+,0)} \to K^{(+,*0)}e^+)}{dq^2}}$$

$\bullet q^2$ ranges: ► $low-q^2$: $q^2 \in [0.1, 1.1] \text{ GeV}^2/c^4$ ► central- q^2 : $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$ + For R_{K^*} K^{*0} : $m(K^{+}\pi^{-}) \in [792,992] \text{ MeV/c}^{2}$

arXiv:2212.09153 arXiv:2212.09152

Renato Quagliani

LFU test strategy

$$R_{K,K^*}(q_a^2, q_b^2) = \frac{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2} \mathrm{d}q^2}$$

$$R_{(K,K^*)} = \frac{\frac{\mathcal{N}_{\varepsilon}}{\varepsilon} (B^{(+,0)} \to K^{(+,*0)} \mu^+ \mu^-)}{\frac{\mathcal{N}_{\varepsilon}}{\varepsilon} (B^{(+,0)} \to K^{(+,*0)} e^+ e^-)}$$

* N from mass fits, ε evaluated from data-driven corrected simulation
* Use resonant-J/ψ mode as normalisation to cancel out most of ε systematics in e/μ differences. Resonant-J/ψ mode also used for ε calibration

LFU test strategy

- * N from mass fits, ε evaluated from data-driven corrected simulation
 * Use resonant-J/ψ mode as normalisation to cancel out most of ε systematics in e/μ differences. Resonant-J/ψ mode also used for ε calibration
- ♦ Cross-check goodness of calibration te
- ♦ Cross-check goodness of method testing

<u>Renato Quagliani</u>

$$\frac{\text{Measured to be 1}}{\frac{\Gamma(J/\psi \to e^+e^-)}{\Gamma(J/\psi \to \mu^+\mu^-)}}$$

$$\frac{r_{J/\psi}^{-1} = 1}{\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(e^+)}$$

$$\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(e^+))$$

esting
$$r_{J/\psi}^{K,K^*} = 1$$

ng $R_{\psi(2S)}^{K,K^*} = 1$

Efficiency ratios and double ratios

A rather complex chain of corrections to control efficiencies differences on electrons and muons

 \bullet On *single-ratios*, the calibration of efficiencies moves $r_{J/\psi}$ by 25%

New frontiers in Lepton Flavor (Pisa)

Renato Quagliani

Efficiency ratios and double ratios

A rather complex chain of corrections to control efficiencies differences on electrons and muons

 \bullet On *single-ratios*, the calibration of efficiencies moves $r_{J/\psi}$ by 25%

◆ On all *double ratios*, the effect of corrections to simulation is moving the result by at most 5%

$\bullet \varepsilon$ well under control

New frontiers in Lepton Flavor (Pisa)

Renato Quagliani

Simultaneous determination of $R_{K,K^{*0}}$

◆ $R_{K,K^{*0}}$ determined from a simultaneous fit to muon/electron decay modes in the two q² bins of interest: • Improve per-event sensitivity constraining partially reconstructed backgrounds in $K^+e^+e^-$ from

- $K^{*0}e^+e^-$ signal
- Coherent efficiency and systematics treatment

New frontiers in Lepton Flavor (Pisa)

28

Scan results in electron PID w/o treatment of misID bkg

Tightening selection in electron PID without specific treatment of electron misidentified

backgrounds exhibited a coherent pattern

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

				1.15		1.10		1.05	
				- 0		_			
<u> </u>									
combination									
sub-detectors									
lelta-log-									
·1 1·1 1 0	$\begin{bmatrix} \pm \\ 0.044 \end{bmatrix}$	± 0.044	± 0.043	± 0.042	± 0.041	± 0.040	± 0.040	± 0.040	$\pm .040$
ikelinooa joi	> 0.60	> 0.55	> 0.50	> 0.45	> 0.40	> 0.35	> 0.30	> 0.25	0.20
				e) $\operatorname{al}-q^2$	robNN(• centra	\mathbb{P} $R_{K^{2}}$			
ProbNN(e):	1.119 \pm	1.113 \pm	$1.097 \pm$	1.083 \pm	$1.097 \pm$	1.103 \pm	$\begin{array}{c} 1.116 \\ \pm \end{array}$	1.119 ±	$^{.127}_{\pm}$
nounal not	0.103	0.101	0.099	0.095	0.097	0.098	0.099	0.099	.100
neurui-nei	1.049 +	1.035 +	1.012 +	1.001 +	1.016 +	0.997	1.016 +	1.016 +	.021
based	0.084	0.081	0.077	0.075	0.076	0.073	0.075	0.074	.074
e-ID score	1.039	1.038	1.014	1.006 +	1.024	$0.993 \\ +$	0.986 +	0.990 +	.965 +
	0.081	0.079	0.075	0.073	0.075	0.071	0.069	0.069	.066
	> 0.60	> 0.55	> 0.50	> 0.45	> 0.40	> 0.35	> 0.30	> 0.25	0.20

 $\operatorname{ProbNN}(e)$

Pass-Fail method to estimate mis-identified backgrounds

Renato Quagliani

$$(FP) + N(PF) - N(FF) = N(B^+ \rightarrow K^+ e^+) + N(B^+ \rightarrow K^+ h^+) + N(B^+ \rightarrow K^+ h^+)$$

Pass-Fail method to estimate mis-identified backgrounds

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Mass fit to rare mode electrons: simultaneous fit $R_{K-K^{*0}}$

Renato Quagliani

[Nat. Phys. 18, 277-282 (2022)]

<u>Renato Quagliani</u>

What we learnt from this latest measurement? [with R_K central q^2 re-analysis]

- ◆ Different PID cut used → Allowed σ_{stat} : ±0.033
- ♦ Shift due to contamination at looser working point : +0.064to not inclusion of background in mass
 - Combination of small residual broad-peaking and combinatorial-like background on the "signalshoulder" plus small peaking background in signal peaking region able to mimic perfectly the signal. Effects driven by hadron misidentified as electrons.

\bullet SM very robust and describes results with excellent precision

• Tensions and flavour anomalies $(b \rightarrow s\ell\ell)$

- ► $d\mathcal{B}/dq^2$ in $b \to s\mu\mu$ decays , **1-3** σ
- Angular $b \rightarrow s\mu\mu$ **2-3** σ
- ► LFU tests (R_{K,K^*}) : previously at 3σ , now compatible with SM at 0.2 σ
- ► $\mathscr{B}(B_{(s)} \to \mu^+ \mu^-)$ compatible with SM, $\sigma_{stat} \sim 14\%$
- Other anomalies $(b \rightarrow c \ell \nu)$: see talk by <u>Rizwaan</u>

Improvements will come from theory/experimental synergy

- Improve σ_{th} , update measurements with Run1/2 using improved methods
- Addition of complementary observables and decay modes, improve existing analysis techniques

◆LHCb Run3 just started: boost the reach to unprecedented level with a brand new detector.

Expect from 2024, 3 x more stat in less than 2.5 years of data taking.

Backup

Run3 has just started, more stat coming soon

Inst. luminosity [10³³ cm⁻²s⁻¹]

Run3: more stat coming soon, exploit available luminosity

- LHC pp collisions at $\sqrt{s} = 14 \,\text{TeV}$, 25 ns bunch spacing $\rightarrow 40 \,\text{MHz}$ collision rate.

More PVs, more tracks, more signal

Almost all events will have a b or c hadron in Run 3

• LHCb aims at boosting the physics output increasing the instantaneous luminosity and the signal rate.

LHCb-PUB-2014-027

Run3: more stat coming soon, real time analysis

▶ Run3 data taking has started, what to expect at LHCb with electron/muon reconstruction?

- Electrons vs Muon reconstruction efficiencies boosted thanks to $\varepsilon_{tracking}$ replacing ε_{L0} effect!
- PID electron performances in the harsher occupancy environment from calorimeter will be known soon once detector commissioning is finalised
 - Note : electron and calorimeter reconstruction algorithms heavily improved compared to $\operatorname{Run}1/2$

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Fully removed hardware level trigger Event reconstruction in real time at 40MHz input rate with $\mathscr{L} = 20 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

• Run 1 (2011-2012):

• Run 2 (2015-2018):

Update alignment & calibration once available

• Run 3 (2021-2025++):

<u>Renato Quagliani</u>

- Hardware trigger: $40 \rightarrow 1 \text{ MHz}$ read-out limit in **Run1.2** based on Muon and Calorimeter signatures
- HLT1(partial) and HLT2(full) event reconstruction split in **Run2**
- **Buffer** data to disk to perform real time alignment and calibration
- Offline quality reconstruction and selection in the online system
- **Run3** : remove Hardware trigger in favour of a fully software based one.
- Event reconstruction at collision rate
- Full detector read-out at 40 MHz

LFU tests in $b \to s\ell\ell$

Renato Quagliani

 R_{K,K^*}

.0

$$\log -q^{2} \begin{cases} R_{K} = 0.994 \stackrel{+0.090}{_{-0.082}} (\text{stat}) \stackrel{+0.027}{_{-0.029}} (\text{syst}), & 1.4 \\ R_{K^{*}} = 0.927 \stackrel{+0.093}{_{-0.087}} (\text{stat}) \stackrel{+0.034}{_{-0.033}} (\text{syst}) & 1.4 \\ \text{central-} q^{2} \begin{cases} R_{K} = 0.949 \stackrel{+0.042}{_{-0.041}} (\text{stat}) \stackrel{+0.023}{_{-0.023}} (\text{syst}), & 1.2 \\ R_{K^{*}} = 1.027 \stackrel{+0.072}{_{-0.068}} (\text{stat}) \stackrel{+0.027}{_{-0.027}} (\text{syst}). & 1.2 \end{cases}$$

- ♦ Most precise and accurate LFU test in $b \rightarrow s\ell\ell$ transition
- ♦ Compatible with SM with a simple χ^2 test on 4 measurement 0.6 at 0.2 σ

LFU results

Net effect for LFU tests: muon vs electron modes

Narrow B signal window

• Muons in final states benefit from excellent σ_p/p at LHCb and negligible energy losses • Electrons in final states suffer from brem-losses and poorer σ_E/E from calorimeters compared to tracking ► Mass fit and yield determination exposed to the interplay/modelling of backgrounds

• Electron mode yields ~ 1/3 Muon mode yields at LHCb in Run I/II due to hardware trigger

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Wide B signal

♦ Measurement still statistically dominated

R_X systematics

Simultaneous measurement: cross-feed $R_{K^{*0}}$ & R_{K}

Renato Quagliani

A statistical statis Statistical statisticae statisticae statis Pass-Fail method to estimate mis-identified backgrounds

 $N(PF): N(B^+ \to K^+ e^+ h^-) + N(B^+ \to K^+ h^+ h')$ $N(FF): N(B^+ \to K^+ e^- h^+) \longrightarrow (B^+ \to K^+ h^+ h')$ Residual double mis♦ Data with inverted PID cuts is enhanced in misID content

> Inverted cuts and still use electron ID hypothesis

The LHCb Detector from 2011-2018 [Run1,Run2]

- Lower luminosity than ATLAS/CMS for $\langle \mu \rangle \simeq 1$, $\mathscr{L}_{inst}^{\text{LHCb}} \simeq 3.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}, \int_{-2011}^{2018} \mathscr{L} = 9 \text{fb}^{-1}$
- ► Large $\sigma_{pp \to b\overline{b}}$ at LHC
- ► Acceptance in forward region of *pp* collisions $(2 < \eta < 5)$
 - Excellent displaced vertex identification
 - Low- $p_{\rm T}$ triggers (few GeV)
- Dipole magnet with very precise tracking detectors $\sigma_p/p \sim 0.5 - 1\%$
 - ▶ Particle ID with calorimeters, muon system and cherenkov detectors (RICH)

Overall picture from theory side on predictions

	parametri uncertainti
$\mathcal{B}(B \to M\ell\ell)$	×
angular observables	
$\overline{\mathcal{B}}(B_s \to \ell \ell)$	CKM
LFU observables	

Renato Quagliani

$b \rightarrow s\ell^+\ell^-$ observables and interpretation

► How to interpret $b \rightarrow s\ell\ell$ analyses results in terms of NP?

Theoretical uncertainties in SM predictions on $b \to s\ell\ell$ observables

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Depending on the observable, the SM predictions is more or less accurate

Left handed $C_7 = C_7^{\text{SM}} + C_7^{\text{NP}}$

$\triangleright \mathscr{B}(B \to X_{\varsigma} \gamma) \propto C_{7}^{2} + C_{7}^{\prime 2} \text{ (inclusive)}$

- $[1] \rightarrow 5\%$ precise prediction
- [2] \checkmark 5% precise from *B*-factories
 - Very hard at LHCb
- \blacktriangleright Im(C_7) measured with A_{CP}
- [2] $\bullet B \to K_{\rm S} \pi^0 \gamma$ at *B*-factories
- [3] \checkmark Tagged time-dep. analysis of $B_s \rightarrow \phi \gamma$ at LHCb

- M. Misiak et al JHEP 06(2020)175
- HFLAV average of BaBar and Belle
- LHCb PRL 123 (2019) 081802 [3]
- LHCb PRD 105 (2022) L051104 [4]
- LHCb JHEP 12 (2020) 081 [5]

Renato Quagliani

Radiative $b \rightarrow s\gamma$ transition

Right handed $C'_7 = C'^{NP}_7$

- [2] Mixing-induced CPV in $B \to K_S \pi^0 \gamma$ at **B**-factories
- [3] $\triangleright \Delta \Gamma_{s}$ induced rate asymmetry in $B_{\rm s} \rightarrow \phi \gamma$ at LHCb
- [4] \blacktriangleright Angular analysis of $\Lambda_h \rightarrow \Lambda \gamma$ at LHCb

Most sensitive

Theory of $B \to M\ell\ell$

 $\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}} | B \rangle = \mathcal{N} \left| \left(\mathcal{A}_V^{\mu} + \mathcal{H}^{\mu} \right) \bar{u}_\ell \gamma_\mu v_\ell \right|$

 $\mathcal{H}^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1}^{\infty} \mathcal{C}_i \int dx^4 e^{iq \cdot x} \langle M | T\{j_{\rm em}^{\mu}(x), O_i(0)\} | B \rangle$ $\mathcal{A}_V^{\mu} = -\frac{2im_b}{a^2} \, \mathcal{C}_7 \langle M | \bar{s} \, \sigma^{\mu\nu} q_\nu \, P_R \, b | B \rangle$ $+ \mathcal{C}_{9} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle$ Wilson coefficients $C_i = C_i^{SM} + C_i^{NP}$ $+ (P_L \leftrightarrow P_R, \mathcal{C}_i \to \mathcal{C}'_i)$ Perturbative, short-distance physics (q^2 independent), well-known in SM, $\mathcal{A}^{\mu}_{A} = \mathcal{C}_{10} \langle M | \bar{s} \gamma^{\mu} P_L b | B \rangle$ $+ (P_L \leftrightarrow P_R, \mathcal{C}_i \to \mathcal{C}'_i)$ parameterise heavy NP Local / Non-local hadronic matrix elements $\mathcal{A}_{S,P} = \mathcal{C}_{S,P} \langle M | \bar{s} P_R b | B \rangle$ Non-perturbative, long-distance physics (q^2 dependent), main source of $+ (P_L \leftrightarrow P_R, \mathcal{C}_i \to \mathcal{C}'_i)$

uncertainty

Matrix elements - non perturbative/long-distance

$$\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}} | B \rangle = \mathcal{N} \Big[\left(\mathcal{A}_V^{\mu} + \mathcal{H}^{\mu} \right) \, \bar{u}_\ell \gamma_\mu v_\ell + \mathcal{A}_A^{\mu} \, \bar{u}_\ell \gamma_\mu \gamma_5 v_\ell + \mathcal{A}_S \, \bar{u}_\ell v_\ell + \mathcal{A}_P \, \bar{u}_\ell \gamma_\ell v_\ell + \mathcal{A}_S \, \bar{u}_\ell v_\ell + \mathcal{A}_S \, \bar{u}$$

$$\mathcal{A}_{V}^{\mu} = -\frac{2im_{b}}{q^{2}} \mathcal{C}_{7} \langle M | \bar{s} \, \sigma^{\mu\nu} q_{\nu} \, I$$
$$\mathcal{A}_{A}^{\mu} = \mathcal{C}_{10} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle$$
$$\mathcal{A}_{S,P} = \mathcal{C}_{S,P} \langle M | \bar{s} \, P_{R} \, b | B \rangle$$

- [0] HPQCD, arXiv:1306.2384,2207.12468
- [1] Fermilab, MILC, arXiv:1509.06235
- [2] Horgan, Liu, Meinel, Wingate, arXiv:1310.3722, arXiv:1501.00367

$$\bigcirc \log q^2$$
 Contin

- [0] Ball, Zwicky, arXiv:hep-ph/0406232
- [1] Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945
- [2] Bharucha, Straub, Zwicky, arXiv: 1503.05534
- [3] Gubernari, Kokulu, vanDyk, arXiv:1811.00983

Non-local

$$\mathcal{H}^{\mu}=rac{-16i\pi^2}{q^2}\sum_{i=1,\ldots,6,8}\mathcal{C}_i\int dx^4$$

 $P_R b|B\rangle + \mathcal{C}_9 \langle M|\bar{s} \gamma^{\mu} P_L b|B\rangle$

 $+ (P_L \leftrightarrow P_R, \mathcal{C}_i \to \mathcal{C}'_i)$

$\langle M | (\ldots) | B \rangle$ parameterised by 3(7) form factors for spin 0(1) final state

(a) $low + high q^2$ Combined fit continuum nuum methods (LCSR) [0] Altmannshofer, Straub, arXiv:1411.3161 + LQCD/LQCD [1] Bharucha, Straub, Zwicky, arXiv: 1503.05534 [2] Gubernari, Kokulu, vanDyk, arXiv:1811.

Form factors determined with Continuum methods (low q^2 , Light-cone sum rules)

 $A^4 e^{iq \cdot x} \langle M | T\{j^{\mu}_{\mathrm{em}}(x), O_i(0)\} | B \rangle,$

$$j^{\mu}_{\rm em} = \sum_{q} Q_q \, \bar{q} \gamma^{\mu} q$$

- Explicit numerical experimental likelihoods, e.g. to avoid digitisation of $B_{s,d} \to \mu\mu$ contour plots
- Measurements of other LFU observables, like e.g. R_{ϕ} or $Q_{4,5}/D_{P'_{4,5}}$
- ► $B \to K^* e^+ e^-$ angular analysis
- ► CP asymmetries to constrain imaginary parts of Wilson coefficients
- **Experimental updates** and **new measurements**, not only from **LHCb** but also from **ATLAS** and CMS, and eventually from Belle II

Purely leptonic channels $(B_{(c)}^0)$ μμ) at LHCb

◆ $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ is a golden channel for LHCb:

- Powerful probe of models with new enhanced (pseudo)

$$\mathscr{B} = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 m_{B_s}^3 |V_{tb} V_{tq}|^2 \tau_{B_s} \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \left[(1 - \frac{4m_{\mu}^2}{M_B^2}) |C_s - C_s'|^2 + |C_s - C_s'|^2 \right]^2}$$

- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)_{SM} = (3.66 \pm 0.14) \times 10^{-9}$
- $\mathscr{B}(B^0 \to \mu^+ \mu^-)_{SM} = (1.03 \pm 0.05) \times 10^{-10}$

<u>Renato Quagliani</u>

Main uncertainties from CKM element Decay constant f_{B_s} from Lattice QCD

Purely leptonic channels $(B_{(s)}^0 \to \mu \mu)$ at LHCb

- Main background due to combinatorics of two μ 's.

• Signal/Background separation obtained through $m_{\mu\mu}$ and BDT trained on two body kinematics and topology

channels $B_{(s)}^0 \to h^+ h^{\prime}$

Semileptonic decays

eventually with one hadron misidentified as muon:estimated with large samples of MC, and normalising to $B^{\pm} \to J/\psi K^{\pm}$

Combinatorial backgroun

from $b\overline{b} \to \mu^+ \mu^- X$: an exponential shape is used, the normalisation is a free parameter of the invariant mass fit

Purely leptonic channels $(B_{(s)}^0 \to \mu \mu)$ at LHCb peaking bkgs

• The most sensitive region is polluted by both combinatorial background and exclusive

$$B^{0}_{(s)} \rightarrow h^{+}h^{-} \text{ decays } (h=K,\pi)$$

both hadrons misidentified as muons (prob $\sim 2x10^{-5}$): this background peaks in the B^0 signal region; it is estimated from not misidentified events, and using PID efficiencies from data

 $\mathscr{B}(B \to hh') \sim 10^{-5}$

"LHCb is not a continuous tracker", kink of track Identification not trivial

Status LHCb on angular analyses

Decay Mode

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

 $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

 $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$

 $\Lambda_b \to \Lambda \mu \mu$

 $B_{\rm c}^0 \to \phi \mu \mu$

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Status & Approach

2011-2016, 8 (+2 wide) q² bins. CP-averaged observable only. CP-asymmetry only 2011-2012. **Tension with SM**

2011-2018

CP-averaged observable only.

Local tension with SM as in K^{*0} mode

2011-2012,

17 bins in B+, 5 bins in B0, Afb and Fh SM-like

2011-2016: Moments analysis for 34 observables No CPV observed. Only high q². Consistent with SM.

2011-2018, 6 q²-bins. Untagged B_{s} , SM-like

Renato Quagliani

Mass fit to rare mode muons: simultaneous fit $R_{K K^{*0}}$

Renato Quagliani

Impact of hardware trigger in Run1/2

Selection: hardware trigger choice in $R_{K K^*}$

<u>Renato Quagliani</u>

Selection: multivariate classifiers

- 1. $B^{(+,0)} \rightarrow K^{(+,*0)} \mu^+ \mu^-$ and $B^{(+,0)} \rightarrow K^{(+,*0)} e^+ e^-$: suppress combinatorial with multivariate classifier using kinematic and vertex quality information.
- 2. $B^{(+,0)} \rightarrow K^{(+,*0)}e^+e^-$: dedicated classifier to fight partially reconstructed background, exploiting vertex and track isolation

Renato Quagliani

 B^+

Optimisation of significance for each mode/ q^2 regions and data taking

Calibration of simulation to determine ε

◆ Small-correlation with combinatorial shape: modelled according to same-sign data $K^{+,*0}\ell^{\pm}\ell^{\pm}$ ◆ After m_{corr} selection, no ≥ 2 missing hadron background expected in fit range.

Renato Quagliani

Selection: veto specific backgrounds B^+ mode

<u>Renato Quagliani</u>

New frontiers in Lepton Flavor (Pisa)

 Combination of efficient kinematic and particle identification criteria to remove background ♦ Specific vetoes under electron mis-ID hypothesis on

Selection: veto specific backgrounds B^0 mode

Renato Quagliani

$$_e$$
 and $D^- \to K^+ \pi^- \pi^-_{\to e^-}$

Challenges in LFU tests: electrons and PID

From RICH I (upstream) and RICH II

Renato Quagliani

From ECAL

From RICH I (upstream) and RICH II

Renato Quagliani

LFU tests: muons and PID

- Excellent **MuonID** and μ/h already with muon station coincidence
- ♦ Negligible brem losses at LHCb

 Muon stations occupancy much lower than ECAL

New frontiers in Lepton Flavor (Pisa)

100

PID scan and coherent pattern observed, rule out an efficiency effect

Verify that the trend is not an "efficiency" calibration effect for electrons. How? Theoretical prediction of $r_{\gamma^*} = \frac{\mathscr{B}(B^0 \to K^{*0}e^+e^-)}{\mathscr{B}(B^0 \to K^{*0}\gamma)}$ extremely clean the closer q^2 is to photon pole, even in presence of NP. Can be used as candle to validate ε on electron mode (M. Borsato). Strength of the check currently limited by external measurement of $\mathscr{B}(B^0 \to K^{*0}\gamma)_{Belle}$.

CERN-THESIS-2022-122 (master thesis C.Lamettais) Verified compatibility at different PID selection of $\mathscr{B}(B^0 \to K^{*0}e^+e^-)^{exp}_{a^2 \in [0.0001, 0, 1]GeV^2/c^4} = r^{theory}_{\gamma^*} \times \mathscr{B}(B^0 \to K^{*0}\gamma)_{Belle}$

- Relative efficiency checks performed also with converted photons comparing variation of yields in data to predictions from corrected simulation
- Additional validation of $\varepsilon(q^2)$ dependency and double ratio approach

Going beyond to cross-check ε double ratio approach at lower q^2 ▶ On-going analysis of $R(\phi\pi)$ using $D_{(s)} \to \phi\pi$ with $\phi \to \ell\ell$ at LHCb

Results using misidentified background at different PID

Renato Quagliani

♦ Tight

- ► 80% misID suppression
- ► 50-60% signal loss
- Intermediate •
 - ► 50% misID suppression
 - ► 20-30% signal loss

Misidentified background included in fit model at tighter working point results are stable

- ◆ Similar structures also for R_{K^*} , however unknown Dalitz for $K^{*0}h^+h^-$
- ♦ Single misidentification background as well, often unknown decays.
- background.

Renato Quagliani

dentified background in electron mode

Simple backgrounds from double-misidentification can be isolated inverting PID criteria

(close to nominal selection) after full selection (i.e $K^{+,*0}h^+h^-$) on electron mode

♦ This motivated primarily the use of an inclusive data-driven treatment of misidentified

Misidentified background in electron mode

◆ Categorise pion- and kaon-like electrons in *control region* based on neural-net kaon ID classifier

• Per-event/per-track weights on e_{fail} of predict background shape and normalisation for e_{pass} ton Flavor (Pisa)

K^+K^- double mis-ID in 'control' region

<u>Renato Quagliani</u>

$\pi^+\pi^-$ double mis-ID in 'control' region

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Choice of control region

- ♦ Control region next to signal region
- \bullet Choose available region (DLL(e) < 2 || ProbNNe < 0.2) while DLL(e)>0.
- ♦ Other choices for a systematic uncertainty

Renato Quagliani

 $+_{11}$ New frontiers in Lepton Flavor (Pise) +

Misidentified background in electron mode

Control region choice:

- not too far from signal, ensuring only pion/kaon misID is relevant
- pass (transfer function) from fail
- $D^{*-} \rightarrow \overline{D}^{0}(K^{+}\pi^{-})\pi^{-}$ calibration

data in p_T, η bins

• $K/\pi \rightarrow e$: "control" \rightarrow "signal"

Validation:

- Data: use $\overline{D}^0(K^+\pi^-)$ in $K^+e^+e^-$ (no vetoes)
- Simulation: $B^+ \to K^+ K^+ K^-$ and

 $B^+ \rightarrow K^+ \pi^+ \pi^-$

Prediction within 2% margin

Renato Quagliani

Misidentified background in electron mode

♦ Model them analytically

• Kernel density estimation for systematic

♦ Normalisation

► Gaussian constrained (stat. precision of prediction)

♦ Systematics

- ► Use alternative *"control"* regions
- Different kaon/pion ID tagging in control region
- ► Trigger effects, binning transfer function

NB: misidentified background not included in mass fit in previous analysis (see backup for comparison)

Renato Quagliani

Predictions after per-track and per-event weighting

Data fully selected in "control" regions $(B^+ \rightarrow K^+ e^+ e^-)$ [before weights]

Renato Quagliani

Data fully selected in "control" regions $(B^0 \rightarrow K^{*0}e^+e^-)$ [before weights]

Renato Quagliani

Misidentified background in electron mode (R_K)

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Ma

Renato Quagliani

New frontiers in Lepton Flavor (Pisa)

Can we go beyond the "inclusive" mis-ID treatment?

$H_b \rightarrow h_1 h_2(h_3) eX$ single mis-ID

- Mis-identification of electrons heavily depends on kinematics of final states (η, p_T) [RICH, CALO], requires 4-body charmless decay full amplitude analysis and branching ratios measurements which are not available to date $(B^0 \to K^+ \pi^- (\pi/K)^+ (\pi/K)^-)$
- Also, need to ping down all the possible single misID backgrounds which would show up from single-electron misID contribution

► Use tighter PID requirements?

- has a direct effect to signal yields and statistical precision we can reach ► It
- Still need to ensure backgrounds become negligible

► Differentiate more the analysis need more statistics

- simultaneous angular analyses in muon/electron states

▶ Need to achieve precise control of mis-identified backgrounds $H_b \rightarrow h_1 h_2 h_3(h_4)$ for double mis-ID &

Split analysis in "with/without" brem added category, presence of recovered photon is more effective to reject mis-ID and combinatorial Also, backgrounds/signal interplay can benefit from going beyond the 1D fit on invariant masses motivating LFU tests coupled to

