

Diego Guadagnoli CNRS, LAPTh Annecy

Before any anomaly

- FCNCs enjoy a unique concurrence of suppression mechanisms in the SM
 - Loop & CKM & sometimes GIM & sometimes chiral
- Due to high EXP & TH accuracies attainable in numerous cases and to the large number of observables one can construct

FCNCs rank among the very best probes of beyond-SM effects e.g. because of the high scales accessible

- FCNCs enjoy a unique concurrence of suppression mechanisms in the SM
 - Loop & CKM & sometimes GIM & sometimes chiral
- Due to high EXP & TH accuracies attainable in numerous cases and to the large number of observables one can construct

FCNCs rank among the very best probes of beyond-SM effects e.g. because of the high scales accessible

• b \rightarrow s transitions are the FCNCs closest to 3rd gen. physics

Take meson mixings as an example

.............................

 $\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq i} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$ $i \neq j$

Take meson mixings as an example

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$

[Isidori-Nir-Perez, 1002.0900]

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(ar{s}_L\gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(ar{s}_R d_L)(ar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	$1.2 imes 10^3$	$2.9 imes 10^3$	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(ar{c}_R u_L)(ar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	$1.0 imes 10^{-6}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_Rd_L)(ar{b}_Ld_R)$	$1.9 imes 10^3$	$3.6 imes10^3$	$5.6 imes 10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		$7.6 imes10^{-5}$		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$3.7 imes10^2$		$1.3 imes 10^{-5}$		Δm_{B_s}

.....

Take meson mixings as an example

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$

[Isidori-Nir-Perez, 1002.0900]

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(ar{s}_L\gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(ar{s}_R d_L)(ar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	$6.9 imes10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	$1.2 imes 10^3$	$2.9 imes 10^3$	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(ar{c}_R u_L)(ar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	$3.3 imes10^{-6}$	$1.0 imes 10^{-6}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_Rd_L)(ar{b}_Ld_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes10^{-5}$		Δm_{B_s}
$(ar{b}_R s_L)(ar{b}_L s_R)$	$3.7 imes10^2$		$1.3 imes 10^{-5}$		Δm_{B_s}

.....

.....

- Typical scales probed are \ge 1000 TeV
- TeV-scale effects typically requiring global-symmetry assumptions such as MFV

- Typical scales probed are ≈ 1000 TeV
- TeV-scale effects typically requiring global-symmetry assumptions such as MFV

.....

It is sometimes stated that:

The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...

It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.

i.e. they could be broken very differently by any extension of the SM – at whatever scale this may play out

It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.

i.e. they could be broken very differently by any extension of the SM – at whatever scale this may play out

• And if flavour is after all not just a puzzle, then flavour observables are all the more important (see e.g. the recent [Davighi, Isidori, 2303.01520])

......

It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.

i.e. they could be broken very differently by any extension of the SM – at whatever scale this may play out

- And if flavour is after all not just a puzzle, then flavour observables are all the more important (see e.g. the recent [Davighi, Isidori, 2303.01520])
- In either case, if focus is on the highest scales attainable, flavour observables remain among the deepest probes

Anomalies (?)

We had a long-sought "seed" for NP.

NP before Dec. 20

......

We had a long-sought "seed" for NP.

• TH-clean observables

- whose prediction was solid enough to be widely accepted: unity ± 1%
- whose measurement was discrepant in several updates

NP before Dec. 20

We had a long-sought "seed" for NP.

- TH-clean observables
 - whose prediction was solid enough to be widely accepted: unity ± 1%
 - whose measurement was discrepant in several updates
- The NP hinted at by this "seed" was somewhat unexpected, a gross violation of:
 - an exact symmetry of the SM gauge sector
 - a near-symmetry (at least observationally) of the SM Yukawa sector

NP before Dec. 20

We had a long-sought "seed" for NP.

- TH-clean observables
 - whose prediction was solid enough to be widely accepted: unity $\pm 1\%$
 - whose measurement was discrepant in several updates
- The NP hinted at by this "seed" was somewhat unexpected, a gross violation of:
 - an exact symmetry of the SM gauge sector
 - a near-symmetry (at least observationally) of the SM Yukawa sector
- But it was supported by a number of (less TH-clean) measurements
 - that in isolation displayed only mild disagreements
 - but in aggregate suggested a coherent picture

NP after Dec. 20

- The more (TH-)solid NP hints have disappeared overnight.
- The remaining discrepancies (in b \rightarrow s BRs and angular obs. & in RD^(*)) are debatable

b → s discrepant data

D. Guadagnoli, LepFlav, Pisa, 15-17 May, 2023

Connection with $b \rightarrow c$ after Dec. 20?

Exercise not yet done quantitatively AFAIK. But it will probably work:

Connection with $b \rightarrow c$ after Dec. 20?

Exercise not yet done quantitatively AFAIK. But it will probably work:

Connection with $b \rightarrow c$ after Dec. 20?

Exercise not yet done quantitatively AFAIK. But it will probably work:

44.....

Beware: properly using LQCD + unitarity, $R(D^{(*)})$ significance ~ 1.4 σ [Martinelli, Simula, Vittorio, 2021]

......

[Greljo et al., 2212.10497]

Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

B – L direction + quark-flavour violation through VL heavy quarks

Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

B – L direction + quark-flavour violation through VL heavy quarks

```
\checkmark challenged by \Delta F = 2 & pp, ee \rightarrow \ell \ell
```

[Greljo *et al.*, 2212.10497]

Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

B – L direction + quark-flavour violation through VL heavy quarks

 \checkmark challenged by $\Delta F = 2$ & pp, ee $\rightarrow \ell \ell$

3^{rd-}(quark)-gen-philic variant: 3 B₃ – L

Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Scalar LQs

• Three "leptonic flavours" of S ~ $(\overline{3}, 3, 1/3)$

[Greljo et al., 2212.10497]

Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Scalar LQs

• Three "leptonic flavours" of S ~ ($\overline{3}$, 3, 1/3)

Semilep at tree level, but $\Delta F = 2$ & ee $\rightarrow \ell \ell$ only at loop level

The important work ahead

(= long-distance)

Main points

Main points

- **D** The TH-cleaner bits (LUV observables; $B_s \rightarrow \mu^+\mu^-$) are gone
- 2 Remaining hints suggest:
 - C_9^{NP} (or C_L^{NP}) at low q^2 , but not at high q^2 ?
 - C_9^{NP} (or C_L^{NP}) in di-muons, and also in di-electrons?

While waiting for updates of discrepant measurements, progress relies on a solid understanding of "non-local FFs" in $b \rightarrow s \ell^+ \ell^-$ (because of (1))

Per aspera (= long-distance contributions) **ad astra**

winnersen (1997)

Form factors in $b \rightarrow sll$

1

Per aspera (= long-distance contributions) ad astra

54.....

What about contribs. (b)?

In principle, well-known to be there, e.g.

▶ On-shell cuts in the variable $(q+k)^2$ (the "forward" or "decay" channel) include branch cuts from intermediate states such as $B \to \overline{D}D_s \to K^*\ell^+\ell^-$. The physical point $(q+k)^2 = M_B^2$ lies on these cuts, which implies that the functions $\mathcal{H}_{\lambda}(q^2)$ are complex-valued for all values of q^2 . But this imaginary part is not associated with any singularity in the variable q^2 . Thus, one can write $\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}^{(re)}(q^2) + i \mathcal{H}_{\lambda}^{(im)}(q^2)$, with $\mathcal{H}_{\lambda}^{(re,im)}(q^2)$ satisfying the analytic properties of the previous point as functions of q^2 , and obeying the same dispersion relation.

[Bobeth et al., 2017]

What about contribs. (b)? In principle, well-known to be there, e.g.

▶ On-shell cuts in the variable $(q+k)^2$ (the "forward" or "decay" channel) include branch cuts from intermediate states such as $B \to \overline{D}D_s \to K^* \ell^+ \ell^-$. The physical point $(q+k)^2 = M_B^2$ lies on these cuts, which implies that the functions $\mathcal{H}_{\lambda}(q^2)$ are complex-valued for all values of q^2 . But this imaginary part is not associated with any singularity in the variable q^2 . Thus, one can write $\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}^{(re)}(q^2) + i \mathcal{H}_{\lambda}^{(im)}(q^2)$, with $\mathcal{H}_{\lambda}^{(re,im)}(q^2)$ satisfying the analytic properties of the previous point as functions of q^2 , and obeying the same dispersion relation.

[Bobeth et al., 2017]

In practice, however...

to this kind of contributions, but the analytic structure of triangle diagrams is quite involved, depending on the values of external momenta and internal masses. A dispersion relation in q^2 of the kind used in refs. [43, 45–48], based on the cut denoted by (1) in Fig. 1 (b), could be written if the *B* invariant mass were below the threshold for the production of charmed intermediate states. However, when the *B* invariant mass raises above the threshold for cut (2), an additional singularity moves into the q^2 integration domain, requiring a nontrivial deformation of the path (see for example the detailed discussion in ref. [94]). Another possibility would be to get an

Ciuchini *et al.*, 2212.10516

Looking elsewhere in *q*²: Effects?

Long-distance issues at low vs. high q² are different whereas above-EWSB new effects are the same

Inclusive b \rightarrow s $\ell^+\ell^-$

44.....

.....

[Isidori *et al.*, 2305.03076]

- Look for proxies of the inclusive $b \rightarrow s \ell^+ \ell^-$ rate at high q^2
 - For $q^2 = 15 \text{ GeV}^2$, rate dominated by 3 modes (B \rightarrow K(*) & B \rightarrow K π)
 - And this prediction agrees with the inclusive prediction from the ratio

$$R_{\rm incl}^{(\ell)}(q_0^2) = \int_{q_0^2}^{m_B^2} dq^2 \frac{d\Gamma(B \to X_s \bar{\ell} \ell)}{dq^2} \left/ \int_{q_0^2}^{m_B^2} dq^2 \frac{d\Gamma(B \to X_u \bar{\ell} \nu)}{dq^2} \right|$$
[Ligeti-Tackmann, '07]

Inclusive b $\rightarrow s \ell^+ \ell^-$

[Isidori et al., 2305.03076]

- Look for proxies of the inclusive $b \rightarrow s \ell^+ \ell^-$ rate at high q^2
 - For $q^2 = 15 \text{ GeV}^2$, rate dominated by 3 modes (B \rightarrow K(*) & B \rightarrow K π)
 - And this prediction agrees with the inclusive prediction from the ratio

$$R_{
m incl}^{(\ell)}(q_0^2) = \int_{q_0^2}^{m_B^2} dq^2 rac{d\Gamma(B o X_s ar{\ell}\ell)}{dq^2} \left/ \int_{q_0^2}^{m_B^2} dq^2 rac{d\Gamma(B o X_u ar{\ell}
u)}{dq^2}
ight|_{
m Ligeti-Tackmann, '07}$$

Comparison with $B \rightarrow K(*)$ measurements from LHCb yields

Dettori, DG, Reboud, '17

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- Essential precondition: controlling all other backgrounds Strategy now being applied at LHCb, resulting in a first limit [LHCb, 2108.09283-4]
- High q² offers several TH advantages
 - Probes in complementary kin. region (high q²) the tensions reported in semi-lep BRs

Dettori, DG, Reboud, '17

Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, **Basic Idea** by enlarging $m_{\mu\nu}$ below B_s peak

- Essential precondition: controlling all other backgrounds ٠ Strategy now being applied at LHCb, resulting in a first limit [LHCb, 2108.09283-4]
- High q² offers several TH advantages
 - Probes in complementary kin. region (high q^2) the tensions reported in semi-lep BRs

Although high q² not immune from long-distance challenges, they are different than low q^2

No significant signal for $B^0 \to \mu^+ \mu^-$ and $B^0_s \to \mu^+ \mu^- \gamma$, upper limits at 95% First world limit on $B^0_s \to \mu^+ \mu^- \gamma$ decay

Conclusions

- Possible hints of NP in b → sµµ transitions persist but only on observables for which certain possibly sizeable, long-distance contributions, are not known quantitatively
- To make progress, we have to address the size of such contributions
- Or we may look in other kinematic regions not affected by such theory uncertainty