

Rare decays at ATLAS and CMS

Rosamaria Venditti Bari University and INFN on behalf of the CMS and ATLAS Collaborations

New Frontiers in Lepton Flavor, Pisa, May 15 – 17, 2023

Probing CLF anomalies at ATLAS and CMS

- b→sℓ⁺ℓ⁻ suppressed at tree level in the SM, further suppression by CKM and helicity
- Rare decay but theoretical predictions extremely precise
- Ideal playground for NP, that can show up in
 - Enhancement/suppression of BR
 - Modification of the angular distributions of the decay products
- Up to 2022, combining the results of B decays involving muon pairs: preference for NP of 5-7σ compared to the SM, mostly driven by LHCb.
- Anomalous magnetic moment of the muon has been argued to possibly have a joint origin with the anomalies in B-meson decays (arXiv:2103.13991)

ATLAS and CMS studies: > $B^{0}_{(s)}$ BR and lifetime > $B \rightarrow K \mu \mu$ angular distributions > $\eta \rightarrow 4 \mu$ decay

ATLAS and CMS Features & Techniques

Compared to Belle, BaBar: Copious production of B_s , B_c , $\Lambda_b \rightarrow$ high statistics for searches for rare decays

Compared to LHCb:

- central acceptance for tracks ($|\eta| \leq 2.5$)
- Operated at full LHC pileup rate (up to ~60 collisions/BX) → higher lumi but complex environment
- Weak-to-nonexistent hadron particle ID
- Kinematic acceptance effectively puts pT cut on parent hadrons

B-Physics programme at ATLAS & CMS

- Data: Run 2 $\mathscr{L} \sim 140 \text{ fb}^{-1} \text{ pp collisions at } \sqrt{\text{s}} = 13 \text{ TeV} (2016-18)$
- «Standard» trigger program focused mostly on muon final states
- «Scouting» triggers collecting events with a set of loose-selection and high-rate
- Other approaches:
 - CMS B-parking Run 2 data collecting huge unbiased ($\sim 10^{10}$) b-hadron events
 - Di-electron triggers in Run 2 at ATLAS

Selected results for rare decay searches

ATLAS

Covered in this talk

Covered in this talk

Covered in this talk

- Measurement of the $B_s^0 \to \mu^+ \mu^-$ decay properties and search for the $B^0 \to \mu^+ \mu^-$
 - Full Run2 (New, <u>arXiv:2212.10311</u>)
 - Run 1+ 2015, 2016 (JHEP 04 (2019) 098)
- Angular analysis of $B \rightarrow K \mu \mu$ decays in *pp* collisions at $\sqrt{s}=8$ TeV
 - $B^0 \to K^* \mu^+ \mu^{-1} \underline{JHEP 10(2018)047}$
 - $B^0 \rightarrow K^* \mu^+ \mu^-$ PLB 781 (2018) 517 (P₁, P'₅), PLB 753 (2016) 424 (A_{FB}, F_L)
 - $B^+ \to K^+ \mu^+ \mu^+ \text{ PRD 98}$ (2018) 112011
 - $B^+ \to K^{*+} \mu^+ \mu^-$ JHEP 04 (2021) 124

- First observation of the rare 4μ decay of the η meson
 - Full Run2 (New, <u>arXiv:2305.04904</u>)

CMS

Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ decay properties and search for the $B^0 \rightarrow \mu^+ \mu^-$

ATLAS and CMS have same analysis strategy, most recent analysis updated (CMS) reported here

 $B_s^0 \rightarrow \mu^+ \mu^-$ state of the art

2020 ATLAS, CMS, LHCb combination: ~2 σ tension w.r.t. the SM prediction New LHCb result based on full 9/fb data set reduces the tension to ~1 σ

$B_s^0 \rightarrow \mu^+ \mu^-$ analysis strategy

• BR normalized using $B^+ \to J/\psi K^+$ or $B^0_s \to J/\psi \phi$ to reduce uncertainties

$$\begin{split} \mathcal{B}(\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}} \frac{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \end{split} \text{ external input alternative } \\ \begin{pmatrix} \mathcal{B}(\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}_{s}^{0} \to \mathbf{J}/\psi\phi(1020)) \frac{N_{\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{0} \to \mathbf{J}/\psi\phi(1020)}} \frac{\varepsilon_{\mathbf{B}_{s}^{0} \to \mu^{+}\mu^{-}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \cr \mathcal{B}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \cr \mathbf{E}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \cr \mathbf{E}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \cr \mathbf{E}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}^{0} \to \mu^{+}\mu^{-}}}, \cr \mathbf{E}(\mathbf{B}^{0} \to \mu^{+}\mu^{-}) &= \mathcal{B}(\mathbf{B}^{0} \to \mathbf{E}(\mathbf{B}^{0} \to \mathbf{B}^{0} \to \mathbf{B}^{0$$

- Dimuon triggers, loose selections applied (SV requirements, invariant mass)
- MVA for background suppression and categorization.
- BR and lifetime measurement extracted from simultaneous unbinned ML fits.

$B_s^0 \rightarrow \mu^+ \mu^-$: multivariate analysis

- Exploit several weak discrimination variables with a BDT (XGBoost)
- Features:
 - pointing angles (2D and 3D)
 → all non-two-body backgrounds
 - SV (quality and displacement)
 → combinatorial
 - isolation (sum of p_T surrounding the signal)
 → semi-leptonic decays
- Training: MC signal sample, data from mass sidebands
- BDT score validated on $B^+ \rightarrow J/\psi K^+$
 - Corrections factors derived with two different techniques and applied to $B_s \rightarrow \mu^+ \mu^- \text{ MC}$

$B_s^0 \rightarrow \mu^+ \mu^-$ systematics and fit

*m*_{μ+μ} [GeV]

Signal extracted by a 2D fit of the di-muon mass and its uncertainty.

Effect	${ m B}_{ m s}^0 ightarrow \mu^+\mu^-$	$\mathrm{B}^{0} ightarrow \mu^{+} \mu^{-}$
$f_{\rm s}/f_{\rm u}$ ratio of the B meson production fractions	3.5%	
$d_{\rm MVA}$ correction	2-	3%
Tracking efficiency (per kaon)	2.3	3%
Trigger efficiency	2-	4%
Fit bias	2.2%	4.5%
Pileup	1	%
Vertex quality requirement	1	%
${ m B}^+ ightarrow { m J}/\psi { m K}^+$ shape uncertainty	1	%
$B^+ \rightarrow J/\psi K^+$ branching fraction	1	%

External inputs in the BF measurement:

- $\mathcal{B}(B^+ \to J/\psi K^+) = (1.020 \pm 0.019) \times 10^{-3}$,
- $\mathcal{B}(J/\psi \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$,
 - $f_{\rm s}/f_{\rm u} = 0.231 \pm 0.008$. from LHCb: <u>PRD 104 (2021) 032005</u>

fs/fu measured by CMS is in agreement: https://arxiv.org/abs/2212.02309 (submitted to PRL)

$B_s^0 \rightarrow \mu^+ \mu^-$ branching fraction

Upper limits on $B^0 \rightarrow \mu^+ \mu^-$ branching fraction

$${\cal B}({
m B}^0 o \mu^+\mu^-) < 1.9 imes 10^{-10}$$
 at 95% CL ${\cal B}({
m B}^0 o \mu^+\mu^-) < 1.5 imes 10^{-10}$ at 90% CL

B_s^0 lifetime measurement

Angular analysis in semi-muonic rare B decays

- Angular analysis of B → K*𝔄 is an ideal playground to test FCNC
 - large range of observables with reduced theory uncertainties wrt BR measurements
- Higher statistics for $K^{*0} \rightarrow K + \pi \text{-}$ over $K^{*+} \rightarrow K^0{}_S\pi \text{+}$
 - More complete K^{*0} µµ angular analyses done by both experiments
 - High statistics but less angular information available for K⁺µµ

CMS and ATLAS performed similar measurements in semi-muonic final state in Run 1 dataset (20 fb⁻¹@ √s=8 TeV)

Angular analysis in semi-muonic rare B decays

$B^0 \rightarrow K^* \mu^- \mu^+$ angular analysis strategy

 F_{L} : fraction of longitudinally polarised K^* mesons Si:angular coefficients.

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \mathrm{d}\cos\theta_K \mathrm{d}\phi \mathrm{d}q^2} = \frac{9}{32\pi} \left| \frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right|$ $-F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi$ + $S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi$ + $S_5 \sin 2\theta_K \sin \theta_L \cos \phi$ $-S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$ $+S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi - S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi \; .$

- UML fit in bins of $q^2 \in [0.04, 6.0]$ GeV² to extract the signal parameters of interest (F_{L} , S_{i} or P'_{i})
- Veto on $q^2 \in [0.98, 1.1]$ GeV² to remove $\phi(1020)$ contamination

$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{2}{3} \frac{A_{\text{FB}}}{1 - F_{L}}$$

$$P_{3} = -\frac{S_{9}}{1 - F_{L}}$$

$$P'_{j=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

$B^0 \rightarrow K^* \mu^- \mu^+$ signal and background model

Signal Model

- Gaussian with width and mean extracted from Kcc control region
 - $B^0 \rightarrow K^* J/\psi$ (q² \in [8, 11] GeV²)
 - $B^0 \rightarrow K^* \psi(2S)$ ($q^2 \in [12, 15]$ GeV²)
- Acceptance function modeled from MC
 - q² and angular distributions sculpted by the trigger and reconstruction efficiencies

Background Model

- Mainly from combinatorial
 - Expo for the mass
 - Polynomial for the angular distributions
- Exclusive decays $(\Lambda_b \rightarrow \Lambda(1520)\mu\mu, \Lambda_b \rightarrow$ pKµµ, B⁺ \rightarrow K^{(*)+}µ+µ- and B⁰_s \rightarrow ϕ µµ) accounted in the systematics

0.6 0.8

5600

m_{κπμμ} [MeV]

$B^0 \rightarrow K^* \mu^- \mu^+$ fit and systematics

Main systematics

- fake K^{*} background and misrecontructed B⁺ → K⁺ (π ⁺)µµ: Peak in cosθ_K ~1
- background from partially reconstructed $B \rightarrow D^0/D^+/D^+_s X$ decays \rightarrow accumulation of events at $|\cos\theta_L| \sim 0.7$

Source	F_L	S_3	S_4	S_5	S_7	S_8
Combinatoric $K\pi$ (fake K^*) background	0.03	0.03	0.05	0.04	0.06	0.16
D and B^+ veto	0.11	0.04	0.05	0.04	0.01	0.06
Background pdf shape	0.04	0.04	0.03	0.03	0.03	0.01
Acceptance function	0.01	0.01	0.07	0.01	0.01	0.01
Partially reconstructed decay background	0.03	0.05	0.02	0.08	0.05	0.06
Alignment and B field calibration	0.02	0.04	0.05	0.04	0.04	0.04
Fit bias	0.01	0.01	0.02	0.03	0.01	0.05
Data/MC differences for p_T	0.02	0.02	0.01	0.01	0.01	0.01
S-wave	0.01	0.01	0.01	0.01	0.01	0.03
Nuisance parameters	0.01	0.01	0.01	0.01	0.01	0.01
Λ_b, B^+ and B_s background	0.01	0.01	0.01	0.01	0.01	0.01
Misreconstructed signal	0.01	0.01	0.01	0.01	0.01	0.01
Dilution	-	-	-	< 0.01	-	< 0.01

Example of fit results in the S₅ folding scheme

- 2.7 deviation from the SM prediction (DHMV, less significant for the other models) but still compatible with SM in 3σ in
 - P'_4 and P'_5 in [4.0, 6.0] GeV²
 - P'₈ in q² ∈ [2.0, 4.0] GeV²

... and CMS and LHCb

First observation of the rare 4μ decay of the η meson

CMS Experiment at the LHC, CERN Data recorded: 2017-Sep-26 01:42:22.588353 GMT Run / Event / LS: 303885 / 1462573361 / 1071

Leptonic radiative decays of the neutral pseudoscalars η and η'

- Double Dalitz decays modes not yet observed
- Important tests of the SM (Phys.Rept. 945 (2022) 1)
 - light quark mass ratios,
 - $\eta \eta'$ mixing parameters,
 - hadronic contributions to the anomalous magnetic moment of the muon (<u>Phys.Lett.B 787 (2018) 111</u>)
- Sensitive to BSM theories (*Rept.Prog.Phys.* 86 (2023) 1)
 - searches for hidden photons, light Higgs scalars, and axion-like particles
 - complementary to worldwide efforts to detect new light particles below the GeV mass scale
 - tests of discrete symmetry violation

η leptonic decays: state of the art

SEPR $\eta \rightarrow 2\mu$ observation (1980) ~2×10⁷ η 's produced

η leptonic decays: state of the art

24

SEPR $\eta \rightarrow 2\mu$ observation (1980) ~2×10⁷ η 's produced

CMS

$\eta \rightarrow 4\mu$: trigger strategy

137 fb⁻¹ (standard triggers) and 96.6 fb⁻¹ (scouting triggers) (13 TeV CMS 10⁸ > 30 2 00 2 00 Barrel category Data 05 $Z_{\rm D}$ (25 GeV) $\varepsilon^2 = 2 \times 10^{-5}$ Standard triggers 107 Background only fit Ö Scouting triggers Events / 0.1 GeV ents 10^{6} ъ 10^{5} E Pull 0^{4} 25.5 24.5 25 $m_{\mu\mu}$ (GeV) 10^{3} PRL 124 (2020) 131802 10² 20 40 60 80 100 120 140 160 180 200 220 $m_{\mu\mu}$ (GeV)

Trigger – the Muon Scouting stream:

- Loose-selection, high-rate triggers
- Store only a limited amount of information per event
 - Track parameters and muon quality
- In 2017 and 2018, collected ~100 fb⁻¹

L1 Muon Scouting triggers for $\eta ightarrow 4\mu$

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{\mu\mu}$ [GeV]	Efficiency
#1	> 4,4.5	_	< 1.2	_	83%
#2	_	< 1.5	< 1.4	_	44%
#3	> 15/7	_	_	_	42%
#4	> 4.5	< 2.0	-	7–18	8%

Overall 92% efficiency on signal

$\eta \rightarrow 4\mu$: analysis strategy

(13 TeV)

→ η → 2μ, lyl < 1.5
</p>

- $\eta \rightarrow 4\mu$ BF determined relative to $\eta \rightarrow 2\mu$
- Offline selections: total charge, common vertex ۲
- Acceptance and efficiencies from MC simulation

- Modeling of Acceptance x efficiency function is the main source of systematics O(10%)
 - including muon trigger and reconstruction efficiency and data-MC difference

$\eta \rightarrow 4\mu$: observation and fit result

- Clear peak in the 4µ spectrum
- Statistical significance > 5 standard deviations
- Possible background contaminations studied from simulation
 - contamination of misidentified hadrons is negligible in the signal region

$$rac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \, (\text{stat}) \pm 0.1 \, (\text{syst})) \times 10^{-3}.$$

SM expectation: $\mathcal{B}(\eta \to 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$ (*Chinese Phys. C* **42** (2018) 023109)

$$\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \pm 0.7 \, (\mathcal{B})) \times 10^{-9}.$$

Rare decays at ATLAS and CMS - R. Venditti

Conclusions

$b \rightarrow s \mu \mu$ transitions deeply studied at ATLAS and CMS

- Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ decay properties and search for the $B^0 \rightarrow \mu^+ \mu^-$ decay at CMS (arXiv:2212.10311)
 - Analysis on full Run 2 dataset (140 fb⁻¹)
 - All results are consistent with the SM
 - Best single measurement of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ to date
- Angular analysis in $B \rightarrow K \mu \mu$ shows no deviations from SM (within the limited experimental precision)

• First observation of the rare 4μ decay of the η meson at CMS (arXiv:2305.04904)

- Observation made possible by use of high-rate triggers, collecting 100 fb⁻¹ in 2017 and 2018
- The measured value of $\mathcal{B}(\eta \rightarrow 4\mu)$ is 25% higher than the SM expectation
- Still in agreement within uncertainties

Thanks for your attention!

 $B_{(s)} \rightarrow \mu^+ \mu^-$ selections

Selection	${ m B_s^0} ightarrow\mu^+\mu^-$	$B^+ \rightarrow J/\psi K^+$	${ m B_s^0} ightarrow { m J}/\psi \phi$
B candidate mass [GeV]	[4.90,5.90]	[4.90,5.90]	[4.90,5.90]
Blinding window [GeV]	[5.15 <i>,</i> 5.50]		
$p_{\mathrm{T}\mu} [\mathrm{GeV}]$	>4	>4	>4
$ \eta_{\mu} $	< 1.4	< 1.4	< 1.4
3D SV displacement significance	> 6	>4	>4
$p_{\mathrm{T}\mu\mu}$ [GeV]	> 5	> 7	> 7
$\mu\mu$ SV probability	> 0.025	> 0.1	> 0.1
J/ψ candidate mass [GeV]		[2.9,3.3]	[2.9,3.3]
Kaon $p_{\rm T}$ [GeV]		> 1	> 1
Mass-constrained fit probability		> 0.025	> 0.025
2D $\mu\mu$ pointing angle [rad]		< 0.4	< 0.4
ϕ candidate mass [GeV]			[1.01, 1.03]

fs/fd ratio, LHCb measurement

 B^{0} and B_{S}^{0} production cross section ratio (fragmentation fraction) extrapolated from LHCb result [arXiv:2103.06810]

$$\mathcal{B}(\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}) \frac{N_{\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}} \frac{\varepsilon_{\mathbf{B}^{+} \to \mathbf{J}/\psi\mathbf{K}^{+}}}{\varepsilon_{\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}}} \frac{f_{\mathrm{u}}}{f_{\mathrm{s}}},$$

fs/fd is the ratio of the B_S^0 and B^0 production cross sections.

LHCb has shown several times that this ratio depends on the B meson pT, the most recent measurement combines several previous results. Some channels allow direct extraction of fs/fd but are limited by statistics, other channels have branching fractions tied to fs/fd but allow to estimate pT and η dependence of fs/fd. All the information was combined in simultaneous global fit:

$$f_s/f_d \ (p_{\rm T}, 13 \,{\rm TeV}) = (0.263 \pm 0.008) + ((-17.6 \pm 2.1) \times 10^{-4}) \cdot p_{\rm T}$$

fs/fd ratio, CMS measurement

https://arxiv.org/abs/2212.02309

Run 3 trigger strategies

- In 2022: inclusive dimuon trigger
 - designed to maximise $B^0 \rightarrow \mu^+ \mu^-$ efficiency
 - suitable for several $b \rightarrow sll$ studies, charmonium and B spectroscopy, LFV $\tau \rightarrow \mu\mu\mu$, exo-searches, search for $\eta \rightarrow \mu^+\mu^-e^+e^-$
- In 2023 and beyond: more challenging data taking conditions
 - higher PU
 - limited bandwidth for dimuon triggers
 - \rightarrow set up a strategy to keep the inclusive dimuon trigger

$\eta \rightarrow 4\mu$: background studies

Cross check performed to check for possibility of rare η decay backgrounds using simulated samples

- η→μ⁺μ⁻ γ with γ conversion in material nonpeaking and shifted to higher m(4µ)
- η→π⁺π⁻μ⁺μ⁻ with π→μ fake shifted to lower mass due to wrong mass hypothesis
 - Rate shown is for current experimental limit
 - $B(\eta \rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}) < 1.6 \times 10^{-4}$
 - SM Prediction 6.5x10⁻⁹

No possibility of significant peaking background component

$\eta \rightarrow 4\mu$: uncertainties

 $\eta \rightarrow 4\mu$ differential event rate as a function of pT in excellent agreement with the simulation

Residual uncertainty due to the imperfect knowledge of Ax ϵ for $\eta \rightarrow 2\mu$ and $\eta \rightarrow 4\mu$

 Accounts for threshold effects determined η→2µ efficiency differences between data and MC (in total ~13%)

Uncertainty in normalization mode branching ratio (~14%)

$${\cal B}(\eta
ightarrow 2\mu) = (5.8 \pm 0.8) imes 10^{-6}$$

$B_s^{\ 0} \rightarrow \mu^+ \mu^-$ perspectives at HL-LHC

•Theory prediction limited by $|V_{cb}|$ •Experimental uncertainty on B_s^{0} dominated by fs/fd •Mass resolution improvements will help distinguishing the B_s^{0} and B_d^{0} peaks \rightarrow B_d^{0} discovery

\mathcal{L} (fb ⁻¹)	$N(B_s)$	$N(B^0)$	$\delta \mathcal{B}(B_s \to \mu \mu)$	$\delta \mathcal{B}(B^0 o \mu \mu)$	$\sigma(B^0 \to \mu\mu)$	$\delta[\tau(B_s)]$ (stat-only)
300	205	21	12%	46%	$1.4 - 3.5\sigma$	0.15 ps
3000	2048	215	7%	16%	$6.3 - 8.3\sigma$	0.05 ps

$B_d^0 \rightarrow K^* \mu^+ \mu^-$ in Run 3 and beyond

- Run3 data could allow to resolve the situation experimentally
- HL-LC Statistics would allow improvement in the precision by one order ~(5–9) × for ATLAS
 - \sim 15× for CMS

