Belle II status and prospects for studies of charged currents

Sourav Dey on behalf of the Belle II Collaboration

New Frontiers in Lepton Flavor

May 15, 2023

- Exchange of W bosons
- Verified mediators of neutrino absorption and emission
- Unambiguous signals of W bosons first seen in UA1 and UA2 experiments at Super Proton Synchrotron in CERN(1983)
- $b \rightarrow c, d \rightarrow u$ etc. Change of flavor
- Belle II prospects(covered in this talk):
 - $b \rightarrow c$ anomalies
 - Light lepton Universality tests
 - $|V_{cb}|$ measurement

SPS, CERN

SuperKEKB

- 40 times larger luminosity than previous generation KEKB
- using nano-beam scheme with a tiny beam spot:
 - 60 nm x 10 μ m x few 100 μ m in y, x, z
- a few hundred atomic layers in y

The Belle II Detector

- SuperKEKB collides electron and positrons
- $\sqrt{s} = 10.58 \text{ GeV}$: mass of $\Upsilon(4S)$
- *BB* pair production with a boost of the center-of-mass system: asymmetric collider
- *B* mesons can decay in a number of ways: prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure Csl + waveform sampling (end-caps)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

electron (7GeV)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

- SuperKEKB collides electron and positrons
- $\sqrt{s} = 10.58 \text{ GeV} : \text{mass of } \Upsilon(4S)$
- *B*B̄ pair production with a boost of the center-of-mass system: asymmetric collider
- *B* mesons can decay in a number of ways: prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)

Luminosity

accelerator and detector upgrades, will resume data taking in late 2023

- Excellent sensitivity to potential leptonuniversality-violating (LUV) physics
- Previous direct searches
 - BR ratio in a single exclusive charmed hadron decay mode [Phys. Rev. D 100, 052007 (2019).]
 - the shapes of kinematic distributions of all decays to charmed hadrons [Phys. Rev. D 104, <u>112011 (2021)</u>
- First measurement of the inclusive branching fraction ratio.
- The most precise test of $e \mu$ universality in semi-leptonic B-meson decays to date

arXiv:2301.0826

$$R(X_{e/\mu}) = \frac{\mathscr{B}(\bar{B} \to X e^- \bar{\nu}_e)}{\mathscr{B}(\bar{B} \to X \mu^- \bar{\nu}_\mu)}$$

This analysis uses:

- Belle II collision data from 2019 and 2021 at a centerof-mass energy of $\sqrt{s} = 10.58$ GeV,
- Integrated luminosity 189 fb⁻¹, ~ 198×10^{6} BB pairs.
- Additional 18 fb^{-1} off-resonance collision data below the $\Upsilon(4S)$ resonance, for backgrounds from continuum processes $e^+e^- \rightarrow q\bar{q}$, where q =u,d,s, or c quarks

- X the generic hadronic final state of the semi-leptonic decay of any flavor of B meson originating from $b \rightarrow cl\nu$ or $b \rightarrow ul\nu$ quark transitions
- Tag-side B mesons decay in fully hadronic modes(FEI)
- Lepton charge requirement:
 - corresponds to the charge of a primary lepton from the semi-leptonic decay of a signal B meson
 - that signal B meson has the opposite flavor to the tag B candidate

Inclusive signal modes

Source	Uncertainty [%]	
Sample size	1.0	
Lepton identification	1.9	
$X_c \ell\nu$ branching fractions	0.1	
$X_c \ell\nu$ form factors	0.2	
Total	2.2	

Consistent with Standard Model $R(X_{e/\mu})_{SM}$ by 1.2 σ and the exclusive Belle $R(D^*_{e/\mu})$ ^{[2],[3]} measurement

[1] J. High Energy Phys. 11, 007 (2022), [2] Phys. Rev. D 100, 052007 (2019), [3] arXiv:2301.07529

$$\begin{split} R(X_{e/\mu}) &= 1.033 \pm 0.010(\text{stat}) \ \pm \ 0.019(\text{syst}) \\ R(X_{e/\mu} \,|\, p_l^B > 1.3 \ GeV/c) &= 1.031 \pm 0.010(\text{stat}) \ \pm \ 0.019(\text{syst}) \end{split}$$

Light-Lepton Universality Test: Angular Asymmetry

Light-Lepton Universality Test: Angular Asymmetry

- $\bar{B^0} \to D^{*+} l^- \nu$ channel is used and reconstructed exclusively
- First dedicated light-lepton LU test using a complete set of angular asymmetry observables
 - designed to cancel most theoretical and experimental uncertainties
 - highly sensitive to LUV
- lepton universality is tested by comparing five angular asymmetries of e and μ

Light-Lepton Universality Test: Angular Asymmetry

 $m_B = B$ mass $m_{D^*} = D^*$ mass q = the four-vector of the momentum transferred from to the dilepton system

 θ_l = The angle between the direction of the charged lepton in the virtual W frame and the W in the B frame

 θ_V = The angle between the *D* in the *D** frame and the *D** in the B frame

 χ = The angle between the decay planes formed by the virtual W and the *D** in the B frame

- Due to the spin of the final-state D*, much of the properties of the V –A coupling and the spin of the virtual W are encoded in angular distributions of the final-state particles
- Fully characterized by four parameters

• Angular Observable:

$$\mathcal{A}_{x}(w) = \left(\frac{d\Gamma}{dw}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dx \frac{d^{2}\Gamma}{dwdx}$$

theoretically and experimentally clean " \bullet probes of LUV

$$\Delta \mathcal{A}_{x}(w) = \mathcal{A}_{x}^{\mu}(w) - \mathcal{A}_{x}^{e}(w)$$

- Most uncertainties cancel ullet
 - experimental uncertainties cancel in the asymmetries \mathcal{A}
 - hadronic uncertainties in the form factors, largely cancel in ΔA

$$A_{FB}: x = \cos \theta_l$$

$$S_3: x = \cos 2\chi$$

$$S_5: x = \cos \chi \cos \theta_v$$

$$S_7: x = \sin \chi \cos \theta_V$$

$$S_9: x = \sin 2\chi$$

Light-Lepton Universality Test: Angular Asymmetry : Results

No evidence of deviation from the standard model has been observed up

*
$$l_{\nu}$$
 $M_{\rm miss}^2 \equiv \left(p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell}\right)^2$

Determination of $|V_{cb}|$ using $\bar{B_0} \to D^{*+}l^- \bar{\nu}_l$

Determination of $|V_{cb}|$ using $\bar{B_0} \to D^{*+} l^- \bar{\nu}_l$

• The non-perturbative physics:

• is parametrized by three form factors as a function of

$$w = \frac{p_B \cdot p_{D^*}}{m_B m_{D^*}} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

• The neutrino direction is reconstructed inclusively using the known angle $\cos \theta_{BY}$ between the *B* and the $Y = D^* + l$ direction

$$\cos \theta_{BY} = \frac{2E_B^{CM}E_Y^{CM} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{CM}||\vec{p}_Y^{CM}|c^2}$$

• Signal yields in bins of kinematic variables w, $\cos \theta_l$, $\cos \theta_V$ and χ are determined bin by bin independently by 2D fits of $\cos \theta_{RY}$ and

 $\Delta M = M(D^*) - M(D^0)$

This analysis uses:

- Belle II collision data from 2019 and 2021 at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV,
- Integrated luminosity 189 fb⁻¹, ~ 198×10^{6} BB pairs.

Determination of $|V_{cb}|$ using $\bar{B_0} \to D^{*+}l^-\bar{\nu}_l$

• The non-perturbative physics:

• is parametrized by three form factors as a function of

$$w = \frac{p_B \cdot p_{D^*}}{m_B m_{D^*}} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

$$\cos \theta_{BY} = \frac{2E_B^{CM}E_Y^{CM} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{CM}||\vec{p}_Y^{CM}|c^2}$$

$$\Delta M = M(D^*) - M(D^0)$$

Determination of $|V_{cb}|$ using $\bar{B_0} \to D^{*+} l^- \bar{\nu}_l$

• Bin-to-bin migration is corrected with SVD (Singular Value Decomposition) unfolding method [arXiv:hep-ph/9509307]

 $\mathcal{M}_{ii} = \mathcal{P}(\text{measured value in bin i} | \text{true value in bin j})$

	1.5	0	0	0	0	0	0	0	0.4	15	76
	1.4	0	0	0	0	0	0	0.9	20	61	22
	3 1.35 1.4	0	0	0	0	0	0.5	20	57	22	1.4
и ра		0	0	0	0	0.3	21	57	20	1.3	0.4
ucte	5 1.3	0	0	0	0.2	19	59	19	1.4	0.4	0.1
Istri	2 1.2	0	0	0	19	63	18	1.4	0.8	0.1	0.1
SCOL	5 1.5	0	0	17	68	16	1.4	0.5	0.1	0.2	0
R	1	0	15	74	12	1.1	0.4	0.3	0.2	0.1	0
	5	15	79	9.2	0.8	0.4	0.2	0.1	0.1	0	0
	0 1.0	85	5.8	0.6	0.1	0.1	0	0	0	0	0
-1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1. Generated w											

Determination of $|V_{cb}|$ using $\bar{B}_0 \to D^{*+} l^- \bar{\nu}_l$

• $|V_{cb}|$ value is determined from measured partial rates $\Delta\Gamma$

Boyd-Grinstein-Lebed parameterization $|V_{cb}|_{BGL} = (40.9 \pm 0.3_{stat} \pm 1.0_{sys} \pm 0.6_{theo}) \times 10^{-3}$

Caprini-Lellouch-Neubert parameterization $|V_{cb}|_{BGL} = (40.4 \pm 0.3_{stat} \pm 1.0_{sys} \pm 0.6_{theo}) \times 10^{-3}$

> results agree well with the standard-model expectations, give no evidence for LUV

To be submitted to PRD

To sum up...

 $R(X_{e/\mu}) = 1.033 \pm 0.010(\text{stat}) \pm 0.019(\text{syst})$

$$R(X_{e/\mu} | p_l^B > 1.3 \ GeV/c)$$

Boyd-Grinstein-Lebed parameterization

 $|V_{cb}|_{BGL} = (40.9 \pm 0.3_{stat} \pm 1.0_{svs} \pm 0.6_{theo}) \times 10^{-3}$

Caprini-Lellouch-Neubert parameterization $|V_{cb}|_{BGL} = (40.4 \pm 0.3_{stat} \pm 1.0_{sys} \pm 0.6_{theo}) \times 10^{-3}$

- The results shown in this presentation agree with SM
- No evidence of LUV(yet)

 $= 1.031 \pm 0.010(\text{stat}) \pm 0.019(\text{syst})$

