

LFU tests in $b \rightarrow clv$ decays at LHCb

Rizwaan Mohammed, on behalf of the LHCb Collaboration University of Oxford

1

UNIVERSITY OF

Outline

- $R(D^*)$ measurement with muonic τ decay
- $R(D^*)$ measurement with hadronic τ decay
- Future measurements

$R(D^*)$ measurements at LHCb

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\mu\nu_{\mu})}$$

Muonic	Hadronic		
• $\tau \to \mu \nu \bar{\nu}$	• $\tau \to \pi \pi \pi \pi (\pi^0) \bar{\nu}$		
• Can measure τ and μ modes in one dataset	• Need external BR measurements for normalisation		
 Large statistics 	• Precise measurement of τ vertex		
• Can measure $R(D^0)$ and $R(D^*)$ simultaneously	 No muonic background 		

$R(D^*)$ measurements at LHCb

Previous measurements

- *R*(*D*^{*}) muonic, Run 1 data [Phys. Rev. Lett. 115, 111803 (2015)]
- *R*(*D**) hadronic, Run 1 data [Phys. Rev. Lett. 120, 171802 (2018)]

In this talk

- $R(D^0) R(D^*)$ muonic, Run 1 data [LHCB-PAPER-2022-039, submitted to PRL]
- *R*(*D**) hadronic, 2015+2016 data [LHCB-PAPER-2022-052, submitted to PRD]

World average status

- Status before two new LHCb results
- Contours defined by $\Delta \chi^2 = 1$
- This means horizontal bands represent 68% confidence interval, ellipses are 39%
- Precision of world average is much higher than any measurement
- Longstanding 3.3σ deviation with SM, difficult for this to move with a single measurement

Combined measurement of $R(D^0)$ and $R(D^*)$

LHCB-PAPER-2022-039

$R(D^0)/R(D^*)$ muonic

LHCB-PAPER-2022-039

- Uses Run 1 LHCb data (3 fb⁻¹)
- Muonic τ decay has large branching fraction (17.4%)
- Make measurement of $R(D^0)$ and $R(D^*)$ using the same dataset
- Split dataset into two samples:
 - $\{D^0\mu\}$ Veto $D^{*+} \rightarrow D^0\pi^+$
 - $\{D^*\mu\}$ Combine D^0 with slow pion
- ${D^0\mu} \sim 5$ times larger due to higher branching fraction and efficiency
- Muonic decay used as normalisation, ~20 times larger than signal

Kinematic reconstruction

- Missing neutrinos create an experimental challenge, can't fit a clean mass peak
- Can't reconstruct $B\overline{B}$ rest frame at a hadron collider, so need to estimate B momentum
- Assume proper velocity $(\gamma\beta)$ of visible part $(D^{(*)}\mu)$ along z axis is equal to proper velocity of *B* along this axis
- This gives $p_B(z)$, other components determined from knowledge of *B* flight direction
- Can then construct other rest-frame quantities $(q^2, m_{miss}^2, E_{\mu}^*)$

Track isolation

- Technique used to reject backgrounds with additional tracks
- Aim is to isolate signal candidate from the rest of the event
- BDT used to determine whether a track is compatible with a B vertex
- Efficient separation of $B \rightarrow D^{**}\mu\nu$ processes, which are very signal-like
- Can also invert the cut to obtain control sample with enriched backgrounds

Control regions

Use 3 separate control regions:

Control regions – one pion sample

- Sample requiring exactly one extra pion (of correct charge)
- This is used to model $B \to (D^{**} \to D^*\pi) l\nu$ backgrounds
- There are four known *D*^{**} resonances, their yields float individually
- Form factor model from Bernlochner & Ligeti [<u>PRD 95 (2017) 014022</u>], all parameters are unconstrained

Control regions – two pion sample

- Sample requiring exactly two extra pions
- This is used to model $B \to (D^{**} \to D^* \pi \pi) l \nu$ backgrounds
- These are heavier *D*^{**} species
- Currently no form factor model for this, use a cocktail simulation sample

Control regions – kaon sample

- Sample requiring at least one extra kaon
- This models $B \rightarrow D^{(*)}DX$ backgrounds
- Float the mass combinations of $B \rightarrow DDKX$ and fraction of $B \rightarrow DDK^*$

Fit strategy

- 3D template fit in q^2 , m_{miss}^2 , E_l^*
- Fit 8 samples simultaneously
- Use two fully independent fitters, independent implementations
- Confirm agreement between two fitters
- Form factor (FF) models:
 - D^* : BGL [<u>JHEP 12 (2017) 060</u>]
 - D^0 : BCL [PRD 92 (2015) 054510]
 - *D*** : Bernlochner & Ligeti [PRD 95 (2017) 014022]
- Helicity-suppressed terms constrained and other FF params are inferred from fit.

Fit projections

• 4 bins are used in q^2 , projections in highest bin are shown

15/05/23

Result

 $R(D^*) = 0.281 \pm 0.018 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$ $R(D) = 0.441 \pm 0.060 \text{ (stat.)} \pm 0.066 \text{ (syst.)}$

• $\rho = -0.43$

- 1.9 σ agreement with SM
- Main systematic uncertainties are from sizes of templates and background shapes $(B \rightarrow D^*DX \text{ and } B \rightarrow D^{**}\mu\nu)$

Measurement of $R(D^*)$ with hadronic τ decays

LHCB-PAPER-2022-052

$R(D^*)$ hadronic

- Update of <u>Run 1 measurement</u>, using data from 2015 and 2016 (2 fb⁻¹)
- Use a normalisation mode, then extract R(*D*^{*}) using external branching fraction as input
- Knowledge of external branching fraction contributes a systematic uncertainty
- However, if we normalised to muonic mode directly, there would be larger systematic uncertainty from efficiency

Measure: $\kappa(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}$ From simulation

$$\kappa(D^*) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \left\{ \frac{1}{\mathcal{B}(\tau^+ \to 3\pi\bar{\nu}_{\tau}) + \mathcal{B}(\tau^+ \to 3\pi\pi^0\bar{\nu}_{\tau})} \right\}$$

$$R(D^*) = \kappa(D^*) \left\{ \frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})} \right\}$$

External branching fraction input [PDG]

$R(D^*)$ hadronic

- ~40% more candidates than previous work (higher energy, better trigger)
- No muonic background, but large background from $\overline{B}{}^0 \rightarrow D^{*+} 3\pi X$
- Also large double charm background $(B \rightarrow D^*DX)$
- $\tau \rightarrow 3\pi(\pi^0)$ decay has branching fraction of 13.5%

$B \rightarrow D^* 3\pi X$ background

- Very large background
- Can reduce by using 3π vertex information – must be displaced from *B* vertex in signal mode
- Use vertex separation variables in a BDT classifier, gives > 99% background rejection

Double charm background

- Another large background comes from $B \rightarrow D^{*-}D_s^+ (\rightarrow 3\pi X)X$ events
- Most abundant background after full selection
- These can mimic the signal topology
- Train "anti- D_s^+ " BDT to reject these decays
- Use isolation and kinematic variables in training
- The BDT is also used as a fit variable

Double charm background

- Another large background comes from $B \rightarrow D^{*-}D_s^+ (\rightarrow 3\pi X)X$ events
- Most abundant background after full selection
- Measure production fractions of these decays in separate fit, then use this to constrain signal fit

Candidates / (0.022

300

200

100

-0.4

-0.2

1.5

 t_{τ} [ps]

LHCb

2 fb⁻¹

Candidates / (0.08 ps)

200

100

0.5

Double charm background

- Another large background comes from $B \rightarrow D^{*-}D_{S}^{+} (\rightarrow 3\pi X)X$ events
- Most abundant background after full selection

Double charm

background

Candidates / (40 MeV/c²) 0001 0001 0002

New Frontiers in Lepton Flavor 2023

 π^+

 K^{-}

Fit strategy

- 3D maximum likelihood template fit, using: { q^2 , anti- D_s^+ BDT, τ lifetime}
- 8 bins in q^2 and τ lifetime, 6 bins in BDT output
- This fit is used to extract $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$ yield
- $B^0 \rightarrow D^{*-} 3\pi$ yield obtained from separate normalisation fit

Result

 $\kappa(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)} = 1.700 \pm 0.101 \text{ (stat)} \stackrel{+0.105}{_{-0.100}} \text{ (syst)}$ This gives absolute branching fraction:
Main systematic uncertainties are template sizes, preselection efficiency and signal template shape

 $\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.23 \pm 0.07 \text{ (stat)} \pm 0.08 \text{ (syst)} \pm 0.05 \text{ (ext)}) \times 10^{-2}$

From this analysis:

 $R(D^*) = 0.247 \pm 0.015 (stat) \pm 0.015 (syst) \pm 0.012 (ext)$

Combining with previous (Run 1) result:

 $R(D^*) = 0.257 \pm 0.012 (stat) \pm 0.014 (syst) \pm 0.012 (ext)$

Consistent with SM within 1σ

Updated world average

• With two new results (LHCb22, LHCb23), world average becomes:

• $R(D^*) = 0.284 \pm 0.013$

 $\circ R(D) = 0.356 \pm 0.029$

Deviation from SM for combined R(D) – R(D*) moves from 3.3σ to 3.2σ with the two new results

Other measurements

Many other $R(H_c)$ being studied...

Phys. Rev. Lett. 120 (2018) 121801

	Run 1: 3 fb ⁻¹ at 7/8 TeV		Run 2: 6 fb ⁻¹ at 13 TeV	
mode	muonic	hadronic	muonic	hadronic
$R(D^+)$	X	×	X	×
$R(D^0)$	v	×	X	×
$R(D^*)$	v	~	X	×
$R(\Lambda_c)$	X	~	X	×
$R(\Lambda_c^*)$	X	×	X	×
$R(J/\phi)$	v	×	X	×
$R(D_{s}^{+})$	X	×	X	×
$R(D_s^{*+})$	X	×	X	×

Angular analyses

- Measurements of angular decay rate give more complete information than branching ratios complementary test of LFU
- Different strategies currently being pursued at LHCb:
- 1. Fit directly for Wilson Coefficients, assuming a particular FF parameterisation
- 2. Measure angular coefficients with a model independent method

$$\frac{d\Gamma(B \to D^* l\nu)}{dw \, d\cos\theta_l \, d\cos\theta_D \, d\chi} = \frac{3m_B^3 m_D^{*2} G_F^2}{16(4\pi)^4} \eta_{EW} |V_{cb}|^2 \sum_i^6 \mathcal{H}_i(w) k_i(\theta_l, \theta_D, \chi)$$

Fitting for Wilson Coefficients

- Use <u>HAMMER</u> package to reweight MC generated with SM decay model to NP scenarios
- Perform fits with CLN, BGL and BLPR parameterisations
- Statistical precision (Run 1 only) comparable to latest B-factory measurements (<u>Phys.</u> <u>Rev. D 100, 052007 (2019)</u>, <u>Phys. Rev. Lett. 123, 091801 (2019)</u>)

See: <u>CERN-THESIS-2022-105</u>

Measuring angular coefficients

- Aim to measure 12 q^2 -integrated angular coefficients in $B \rightarrow D^* l \nu$ in a model independent way
- Method outlined in proof of concept paper (JHEP 11 (2019) 133)
- Create a template for each angular term, assigning per-event weights to cancel decay model in MC

+Parametric fit to true angles-- 23 fb^{-1} template fit---

Conclusions

- LFV tests in $b \rightarrow clv$ are an important component of LHCb's physics program
- Recently released two major measurements of $R(D^0)/R(D^*)$
- Complementary tests with other $R(H_c)$ measurements are being performed
- In addition, angular analyses of $B \rightarrow D^* l \nu$ are ongoing
- Still lots more data to analyse from Run 1 and 2, and have now started Run 3!

Backup

Comparison with previous result

- Previous measurement was only $R(D^*)$ with same data sample
- Refitted this sample, with updated procedure
- From this fit, obtain $R(D^*) = 0.293$, 1.6 σ agreement with previous result

