Theory of charged current decays

Marzia Bordone

New Frontiers in Lepton Flavor
15.05.2023

Introduction

Interaction basis

$$
-\mathcal{L}_{\text {Yukawa }}=Y_{d}^{i j} \bar{Q}_{L}^{i} H d_{R}^{j}+Y_{u}^{i j} \bar{Q}_{L}^{i} \tilde{H} u_{R}^{j}+\text { h.c. }
$$

- Strong hierarchy between families
- Many free parameters

Mass basis

$$
\mathcal{L}_{c c} \propto \bar{u}_{L}^{i} \gamma^{\mu} b_{L}^{j} W_{\mu}^{+} V_{i j}
$$

- Remnant of the change of basis is the CKM matrix
- The CKM is a unitary matrix

Introduction

Interaction basis

$$
-\mathcal{L}_{\text {Yukawa }}=\underbrace{Y_{d}^{i j} \bar{Q}_{L}^{i} H d_{R}^{j}+Y_{u}^{i j} \bar{Q}_{L}^{i} \tilde{H} u_{R}^{j}+\text { h.c. } . ~}
$$

3×3 matrices in flavour space

- Strong hierarchy between families
- Many free parameters

Mass basis

$$
\mathcal{L}_{c c} \propto \bar{u}_{L}^{i} \gamma^{\mu} b_{L}^{j} W_{\mu}^{+} V_{i j}
$$

- Remnant of the change of basis is the CKM matrix
- The CKM is a unitary matrix

Why is $V_{c b}$ important?
[Buras, Venturini, '21]

Lepton Flavour Universality tests

Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

How can we tame the non-perturbative monsters

Exclusive decays

$$
\left\langle H_{c}\right| J_{\mu}\left|H_{b}\right\rangle=\sum_{i} S_{\mu}^{i} \mathcal{F}_{i}
$$

- Lattice QCD
- QCD SR, LCSR
- HQET (exploit $m_{b, c} \rightarrow \infty$ limit) + Data driven fits
- Dispersive analysis

How can we tame the non-perturbative monsters

Exclusive decays

- QCD SR, LCSR
- HQET (exploit $m_{b, c} \rightarrow \infty$ limit) + Data driven fits
- Dispersive analysis \Rightarrow see Ludovico's talk!

Lattice QCD

- Lattice QCD does not rely on perturbative expansion to perform calculations \Rightarrow perfect environment to calculate non-perturbative quantities
- Lattice QCD uses a discretised space-time, with lattice spacing denoted as a

- fermions occupy sites on the lattice
- gauge fields are links between sites
- the lattice spacing a acts as a regulator \Rightarrow QFT built on lattice is finite
- physical results are obtained taking the continuum limit $a \rightarrow 0$
- in practice, lattice QCD calculations are limited only by computational resources and efficiency of the implementation \Rightarrow leads to statistical and systematic uncertainties

Lattice QCD: uncertainties

- Continuum Limit: controlling the discretisation errors
- Infinite Volume limit: finite space-time might induce shifts of physical quantities from the measured ones
- Chiral extrapolation: extrapolation of m_{u} and m_{d} (or equivalently m_{π})
- Heavy quark mass extrapolation to the physical limit
- Operator matching: matching of operators on the lattice with lattice regularisation scheme onto the continuum

Heavy Quark Effective Theory

- The H_{b} momentum is mostly carried by the b quark

$$
p^{\mu}=m_{b} v^{\mu}+k^{\mu}
$$

- The residual momentum: $k^{\mu} \sim \Lambda_{\mathrm{QCD}}$

Heavy Quark Effective Theory

- The H_{b} momentum is mostly carried by the b quark

$$
p^{\mu}=m_{b} v^{\mu}+k^{\mu}
$$

- The residual momentum: $k^{\mu} \sim \Lambda_{\mathrm{QCD}}$
- In the limit $m_{q} \rightarrow \infty$

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\infty}+\mathcal{O}\left(1 / m_{q}\right) \\
& \text { mass independent }
\end{aligned}
$$

Heavy Quark Effective Theory

- The H_{b} momentum is mostly carried by the b quark

$$
p^{\mu}=m_{b} v^{\mu}+k^{\mu}
$$

- The residual momentum: $k^{\mu} \sim \Lambda_{\mathrm{QCD}}$
- In the limit $m_{q} \rightarrow \infty$

$$
\begin{aligned}
& \quad \mathcal{L}_{\text {eff }}=\mathcal{L}_{\infty}+\mathcal{O}\left(1 / m_{q}\right) \\
& \text { mass independent }
\end{aligned}
$$

1. At leading power, all heavy quarks are the same
2. Intrinsic spin-flavour symmetry relates the various form factors

$b \rightarrow c$ case

- For $b \rightarrow c$ transitions, we have $m_{b}, m_{c} \rightarrow \infty$ but m_{c} / m_{b} finite
- Spin-flavour symmetry relates all $B^{(*)} \rightarrow D^{(*)}$ form factors
- The HQET provides a reduction of the free parameters
- At zero recoil $\left(q^{2}=q_{\max }^{2}\right)$, the form factors are normalised

$b \rightarrow c$ case

- For $b \rightarrow c$ transitions, we have $m_{b}, m_{c} \rightarrow \infty$ but m_{c} / m_{b} finite
- Spin-flavour symmetry relates all $B^{(*)} \rightarrow D^{(*)}$ form factors
- The HQET provides a reduction of the free parameters
- At zero recoil $\left(q^{2}=q_{\max }^{2}\right)$, the form factors are normalised

Apart from the zero-recoil point, parameters in the Heavy Quark Expansion are unknown a priori, and have to be determined from other dynamical sources

Sum rules

$$
\Pi_{\mu \nu}\left(q^{2}\right)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J^{\mu}(x), J^{\nu, \dagger}(x)\right\}|0\rangle
$$

- In the region $\operatorname{Re}\left(q^{2}\right)<0$: the correlation function $\Pi_{\mu \nu}\left(q^{2}\right)$ is analytic
- For $-q^{2} \ll \Lambda_{Q C D}^{2}$: quarks propagate at short distances

If both conditions are fulfilled, $\Pi_{\mu \nu}\left(q^{2}\right)$ can be expanded in a local OPE

$$
\Pi\left(q^{2}\right)=\frac{1}{\pi} \int_{s_{t h}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)}{s-q^{2}}
$$

Quark-Hadron Duality

Amplitudes computed in perturbative QCD can be approximated by amplitudes computed treating hadrons as fundamental particles

$$
\begin{array}{cc}
\int_{s_{t h}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)^{\mathrm{OPE}}}{s-q^{2}} & \approx \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)^{\mathrm{had}}}{s-q^{2}} \\
\uparrow & \uparrow \\
\text { calculable } & \text { unknown }
\end{array}
$$

We can extract information on the hadronic parameters

Quark-Hadron Duality

Amplitudes computed in perturbative QCD can be approximated by amplitudes computed treating hadrons as fundamental particles

$$
\int_{s_{t h}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)^{\mathrm{OPE}}}{s-q^{2}} \approx \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)^{\mathrm{had}}}{s-q^{2}}
$$

We can extract information on the hadronic parameters

Spectral representation:

$$
2 \operatorname{Im}(\Pi)_{\mu \nu}=\sum_{n}\langle 0| j_{\mu}|n\rangle\langle\uparrow| j_{\nu}|0\rangle d \tau_{n}(2 \pi)^{4} \delta^{(4)}\left(q-p_{n}\right)
$$

The exclusive form factors

- Non perturbative methods evaluate the form factors in precise kinematic points
- The kinematic dependence must be inferred
- The most used ones are:
\Rightarrow BGL parametrisation
[Boyd, Grinstein, Lebed, '95]
\Rightarrow CLN parametrisation + updates
[Caprini, Lellouch, Neubert, '95]
\Rightarrow Dispersive Matrix

BGL

- Model independent parametrisation
- Uses analytical properties of the form factors
- Conformal mapping

$$
q^{2} \mapsto z\left(q^{2}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

with t_{+}pair production threshold and $t_{0}<t_{+}$

The z-expansion

- in the complex plane form factors are real analytic functions
- q^{2} is mapped onto the conformal complex variable z

$$
z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

$t_{+}=\left(m_{H_{\text {in }}}+m_{H_{\text {fin }}}\right)^{2}$ and t_{0} can be chosen to minimise $z_{\text {max }}$

- q^{2} is mapped onto a disk in the complex z plane, where $\left|z\left(q^{2}, t_{0}\right)\right|<1$
- being z small, we can expand any form factor in z and truncate the series at relatively low orders

BGL

- Model independent parametrisation
- Uses analytical properties of the form factors
- Conformal mapping

$$
q^{2} \mapsto z\left(q^{2}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
$$

with t_{+}pair production threshold and $t_{0}<t_{+}$

- $|z| \ll 1$, for $B \rightarrow D^{(*)}:\left|z_{\max }\right|=6 \%$
- We can expand as

$$
F_{i}=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k} \quad \text { and } \quad \sum_{k=0}^{n_{i}}\left|a_{k}^{i}\right|^{2}<1
$$

P_{i} : Blaschke factors, ϕ_{i} : outer functions \Rightarrow known quantities

- Bounds $+\left|z_{\max }\right| \Rightarrow$ expect rapid convergence
- a_{k}^{i} need to be determined (from data, lattice, sum rules, etc.)
- The "easy" case:
\Rightarrow only two form factors
\Rightarrow the D is "stable" on the lattice
- Two datasets available, in excellent agreement
- Two lattice determinations available, in excellent agreement

BGL Fit lattice + data

$$
\left|V_{c b}^{D}\right|=(40.5 \pm 1.0) \times 10^{-3} \quad R_{D}=0.299 \pm 0.003
$$

Inputs:

- FNAL/MILC'15
- HPQCD'16
- Babar'09
- Belle'16

$$
B \rightarrow D^{*} \ell \bar{\nu}
$$

Inputs:

- Belle '18 differential distribution in the 4 kinematical variables
- LCSR at $q^{2}=0$
- Unitarity constraints on the form factors parameters
- Lattice points at $q^{2}=q_{\text {max }}^{2}$
- Form factors expanded up to z^{2}

$$
\begin{aligned}
\left|V_{c b}^{D^{*}}\right| & =\left(39.2_{-1.2}^{+1.4}\right) \times 10^{-3} \\
R_{D^{*}} & =0.253_{-0.006}^{+0.007}
\end{aligned}
$$

CLN

- CLN uses Heavy Quark Effective Theory at $1 / m_{b}$
- Use ansatz at $\mathcal{O}\left(1 / m_{b}\right)$ and $\mathcal{O}\left(\alpha_{s}\right)$

$$
F_{i}=F_{i}\left(q^{2}=q_{\max }^{2}\right) \times\left[\left(a_{i}+b_{i} \frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \sum_{j} c_{i j} \xi_{\mathrm{SL}}^{j}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \sum_{j} d_{i j} \xi_{\mathrm{SL}}^{j}\right]
$$

- Only 1 leading and 3 sub-leading Isgur Wise function contribute but they are not known a priori
- The form factors in $B^{(*)} \rightarrow D^{(*)}$ are correlated

CLN ansatz is inconsistent:

- Use $F_{i}\left(q^{2}=q_{\max }^{2}\right)$ from other source (e.g. Lattice) to properly normalize form factors
- Use QCDSR for sub-leading IW functions w/o error estimates
- No proper inclusion of errors from higher orders

Note: when CLN was introduced these assumptions were justified as experimental sensitivity was low and allowed fits with a small set of parameters

HQET with $1 / m_{c}^{2}$

- With the current precision can go beyond CLN and include higher order corrections

At order $1 / m, \alpha_{s}, 1 / m_{c}^{2}$:
$F_{i}=\left(a_{i}+b_{i} \frac{\alpha_{s}}{\pi}\right) \xi+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{b}} \sum_{j} c_{i j} \xi_{\mathrm{SL}}^{j}+\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}} \sum_{j} d_{i j} \xi_{\mathrm{SL}}^{j}+\left(\frac{\Lambda_{\mathrm{QCD}}}{2 m_{c}}\right)^{2} \sum_{j} g_{i j} \xi_{\mathrm{SSL}}^{j}$

- More conservative use of QCDSR (including uncertainties)
- Can leverage new theory inputs like LCSR and Lattice beyond zero recoil.
- Inclusion of $1 / m_{c}^{2}$ corrections highly motivated because they are naively of the same size of $1 / m_{b}, \alpha_{s}$, and α_{s} / m_{c} corrections
- data independent determination of the IW functions are possible
[1703.05330,1801.01112,1908.09398,1912.09335,2206.11281]

$$
B \rightarrow D^{(*)} \text { at } 1 / m_{c}^{2}
$$

- QCD Sum Rules, LCSR, Lattice at $q^{2}=q_{\max }^{2}$ for $B \rightarrow D^{*}$, Lattice for $B \rightarrow D$

Lattice calculations at $q^{2} \neq q_{\text {max }}^{2}$

- FNAL/MILC '21
- HQE@1/ m_{c}^{2}
- Exp data (BGL)
- JLQCD
- HPQCD '23
- Tensions between different lattice determinations, experimental data and non-lattice theory determination
- No consensus yet, ongoing checks
- Lattice calculations drift $R_{D^{*}}$ to higher values
- New Belle analysis available

Summary

The $V_{c b}$ puzzle

- There is a spread between inclusive and exclusive determinations of $V_{c b}$
- Discussion going on different inputs both from experimental and theoretical point of view
- New Belle analysis data are just out, stay tuned for the results!

$$
R_{D^{*}}
$$

			BGL $B \rightarrow D^{*}: 1905.08209$
			DM $B \rightarrow D^{*}: 2111.10582$
			HQE $B \rightarrow D^{*}: 1912.09335$
-			$\mathrm{HQE}_{\mathrm{RC}}$: 2206.11281
			FNAL/MILC $B \rightarrow D^{*}: 2105.14019$
			HPQCD $B \rightarrow D^{*}: 2304.03137$
0.25	0.27		
			$R_{D^{*}}$

- Spread between lattice-based and non-lattice based calculations
- Lattice-based determinations are not yet included in HFLAV

Summary

- Charged current decays provide the means to probe the Standard Model at high accuracy
- This requires a high control of hadronic matrix elements
- A lot of work has been done in recent years both from theoretical and experimental points of view
\Rightarrow The $V_{c b}$ puzzle is far from being resolved!
\Rightarrow Personal opinion: this is one of the biggest problem in flavour physics nowadays
\Rightarrow New Lattice results are impressive, but they need further investigation
\Rightarrow New experimental analyses are out, results are yet to come, but all data are welcome!

Appendix

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle
$$

Theory framework

$$
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle
$$

$$
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
$$

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework

$$
\begin{gathered}
\Gamma=\frac{1}{m_{B}} \operatorname{Im} \int d^{4} x\langle B(p)| T\left\{\mathcal{H}_{\mathrm{eff}}^{\dagger}(x) \mathcal{H}_{\mathrm{eff}}(0)\right\}|B(p)\rangle \\
\uparrow \\
\sum_{n, i} \frac{1}{m_{b}^{n}} \mathcal{C}_{n, i} \mathcal{O}_{n+3, i}
\end{gathered}
$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)| \mathcal{O}_{n+3, i}|B(p)\rangle$ are non perturbative
\Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
\Rightarrow They can be extracted from data
\Rightarrow With large n, large number of operators

Theory framework

$$
\begin{gathered}
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[1+a_{1}\left(\frac{\alpha_{s}}{\pi}\right)+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}-\left(\frac{1}{2}-p_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}\right. \\
\left.+\left(g_{0}+g_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right] \\
\mu_{\pi}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}
\end{gathered}
$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

Theory framework

$$
\begin{gathered}
\Gamma_{s l}=\Gamma_{0} f(\rho)\left[1+a_{1}\left(\frac{\alpha_{s}}{\pi}\right)+a_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha_{s}}{\pi}\right)^{3}-\left(\frac{1}{2}-p_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}\right. \\
\left.+\left(g_{0}+g_{1}\left(\frac{\alpha_{s}}{\pi}\right)\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}}+d_{0} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g_{0} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots\right] \\
\mu_{\pi}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 m_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}
\end{gathered}
$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- Moments of the kinematic distributions

$$
\begin{aligned}
\left\langle E_{\ell}^{n}\right\rangle & =\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} E_{\ell}^{n} \frac{d \Gamma}{d E_{\ell}}}^{\Gamma_{E_{\ell}>E_{\ell, \mathrm{cut}}}}}{R^{*}}=\frac{\int_{E_{\ell}>E_{\ell, \mathrm{cut}} d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}^{\int d E_{\ell} \frac{d \Gamma}{d E_{\ell}}}}{}
\end{aligned}
$$

- Similar definition for hadronic mass moments
- The moments give access to the distribution, but not to the normalisation
- They admit an HQE as the rate
\Rightarrow No $\mathcal{O}\left(\alpha_{s}^{3}\right)$ terms are known yet

Scheme conventions

The semileptonic width has a strong dependence on $m_{b}: \Gamma_{0} \sim m_{b}^{5}$
Suitable choice for the mass scheme is needed:

- Pole mass scheme
\Rightarrow Renormalon ambiguity
\Rightarrow Perturbative series is factorially divergent

$$
\Gamma_{s l} \sim \sum_{k} k!\left(\frac{\beta_{0}}{2} \frac{\alpha_{s}}{\pi}\right)^{k}
$$

- We choose to use to b-quark mass and the non perturbative parameters in the kinetic scheme
[Bigi, Shifman, Uraltsev, Vainshtein]

$$
\begin{array}{r}
m_{b}^{k i n} \mu=m_{b}^{O S}-[\bar{\Lambda}(\mu)]_{\mathrm{pert}}-\frac{\left[\mu_{\pi}^{2}(\mu)\right]_{\mathrm{pert}}}{2 m_{b}^{k i n}(\mu)} \\
\mu_{\pi}^{2}(0)=\mu_{\pi}^{2}(\mu)-\left[\mu_{\pi}^{2}(\mu)\right]_{\mathrm{pert}} \\
\rho_{D}^{3}(0)=\rho_{D}^{3}(\mu)-\left[\rho_{D}^{3}(\mu)\right]_{\mathrm{pert}}
\end{array}
$$

\Rightarrow Wilsonian cutoff $\mu=1 \mathrm{GeV}$
\Rightarrow Kinetic scheme tailored on the HQE

- We express the charm mass in the $\overline{\mathrm{MS}}$ scheme

	experiment	values of $E_{\text {cut }}(\mathrm{GeV})$	Ref.
R^{*}	BaBar	$0.6,1.2,1.5$	$[26,27]$
ℓ_{1}	BaBar	$0.6,0.8,1,1.2,1.5$	$[26,27]$
ℓ_{2}	BaBar	$0.6,1,1.5$	$[26,27]$
ℓ_{3}	BaBar	$0.8,1.2$	$[26,27]$
h_{1}	BaBar	$0.9,1.1,1.3,1.5$	$[26]$
h_{2}	BaBar	$0.8,1,1.2,1.4$	$[26]$
h_{3}	BaBar	$0.9,1.3$	$[26]$
R^{*}	Belle	$0.6,1.4$	$[28]$
ℓ_{1}	Belle	$1,1.4$	$[28]$
ℓ_{2}	Belle	$0.6,1.4$	$[28]$
ℓ_{3}	Belle	$0.8,1.2$	$[28]$
h_{1}	Belle	$0.7,1.1,1.3,1.5$	$[29]$
h_{2}	Belle	$0.7,0.9,1.3$	$[29]$
$h_{1,2}$	CDF	0.7	$[31]$
$h_{1,2}$	CLEO	$1,1.5$	$[32]$
$\ell_{1,2,3}$	DELPHI	0	$[33]$
$h_{1,2,3}$	DELPHI	0	$[33]$

- Theoretical uncertainties are necessary for the fit stability
[Gambino, Schwanda, '13]
- Different treatments yield to slightly different results, but all compatible
- The value of $\left|V_{c b}\right|$ is simply extracted as
[Alberti, Gambino, Healey, Nandi, '14]

$$
\left|V_{c b}\right|=\sqrt{\frac{\mathcal{B}_{c \ell \bar{\nu}}}{\tau_{B} \Gamma_{s l}}}=(42.21 \pm 0.78) \times 10^{-3}
$$

Inclusion of $\mathcal{O}\left(\alpha_{s}^{3}\right)$ results

b-quark mass:

$$
m_{b}^{k i n}(1 \mathrm{GeV})=\left[4169+259_{\alpha_{s}}+78_{\alpha_{s}^{2}}+26_{\alpha_{s}^{3}}\right] \mathrm{MeV}=(4526 \pm 15) \mathrm{MeV}
$$

Semileptonic width

$$
\begin{aligned}
\Rightarrow \mu=1 \mathrm{GeV}, \mu_{b} & =m_{b}^{k i n}, \mu_{c}=3 \mathrm{GeV} \\
\Gamma_{s l} & =\Gamma_{0} f(\rho)\left[0.9257-0.1163_{\alpha_{s}}-0.0349_{\alpha_{s}^{2}}-0.0097_{\alpha_{s}^{3}}\right] \\
\Rightarrow \mu=1 \mathrm{GeV}, \mu_{b} & =m_{b}^{k i n} / 2, \mu_{c}=2 \mathrm{GeV} \\
\Gamma_{s l} & =\Gamma_{0} f(\rho)\left[0.9257-0.1138_{\alpha_{s}}-0.0011_{\alpha_{s}^{2}}+0.0104_{\alpha_{s}^{3}}\right]
\end{aligned}
$$

$$
\text { residual uncertainty } \sim 0.5 \%
$$

Residual uncertainty

$\ldots-$.-. 2 loop, $\mu_{b}=m_{b}^{k i n}, \mu_{c}=3 \mathrm{GeV}$

- 3 loop, $\mu_{b}=m_{b}^{k i n}, \mu_{c}=3 \mathrm{GeV}$

---. 2 loop, $\mu_{b}=m_{b}^{k i n} / 2, \mu_{c}=2 \mathrm{GeV}$
- 3 loop, $\mu_{b}=m_{b}^{k i n} / 2, \mu_{c}=2 \mathrm{GeV}$
- Residual scale dependence
\Rightarrow Milder including $\mathcal{O}\left(\alpha_{s}^{3}\right)$
\Rightarrow We choose $\mu_{c}=2 \mathrm{GeV}, \mu_{b}=m_{b}^{k i n} / 2$ and $\mu=1 \mathrm{GeV}$ to minimize scale dependence
- Other sources of uncertainties e.g. higher corrections to the HQE parameters yield to smaller residual uncertainties

Residual uncertainty

- Residual scale dependence
\Rightarrow Milder including $\mathcal{O}\left(\alpha_{s}^{3}\right)$
\Rightarrow We choose $\mu_{c}=2 \mathrm{GeV}, \mu_{b}=m_{b}^{k i n} / 2$ and $\mu=1 \mathrm{GeV}$ to minimize scale dependence
- Other sources of uncertainties e.g. higher corrections to the HQE parameters yield to smaller residual uncertainties
1.2% residual uncertainty

The semileptonic fit

$m_{b}^{k i n}$	$\bar{m}_{c}(2 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	$\mu_{g}\left(m_{b}\right)$	$\rho_{L S}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51

- Constraints from FLAG $N_{f}=2+1+1: \bar{m}_{b}\left(\bar{m}_{b}\right)=4.198(12) \mathrm{GeV}$ and $\bar{m}_{c}\left(\bar{m}_{c}\right)=0.988(7) \mathrm{GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of $V_{c b}$ is stable
- Without constraints on m_{b}, we extract $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.210(22) \mathrm{GeV}$

The semileptonic fit

$m_{b}^{k i n}$	$\bar{m}_{c}(2 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	$\mu_{g}\left(m_{b}\right)$	$\rho_{L S}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.573	1.092	0.477	0.185	0.306	-0.130	10.66	42.16
0.012	0.008	0.056	0.031	0.050	0.092	0.15	0.51

- Constraints from FLAG $N_{f}=2+1+1: \bar{m}_{b}\left(\bar{m}_{b}\right)=4.198(12) \mathrm{GeV}$ and $\bar{m}_{c}\left(\bar{m}_{c}\right)=0.988(7) \mathrm{GeV}$
- No new experimental input wrt to the one in 1411.6560
- The central value of $V_{c b}$ is stable
- Without constraints on m_{b}, we extract $\bar{m}_{b}\left(\bar{m}_{b}\right)=4.210(22) \mathrm{GeV}$

$$
V_{c b}=42.16(32)_{\exp }(30)_{t h}(25)_{\Gamma} \cdot 10^{-3}
$$

Higher power corrections

- At $\mathcal{O}\left(1 / m^{4}\right)$ the number of operators become large
$\Rightarrow 9$ at $\operatorname{dim} 7$
$\Rightarrow 18$ at $\operatorname{dim} 8$

Lowest Lying State Saturation Approximation:

$$
\langle B| \mathcal{O}_{1} \mathcal{O}_{2}|B\rangle=\sum_{n}\langle B| \mathcal{O}_{1}|n\rangle\langle n| \mathcal{O}_{2}|B\rangle
$$

At dimension 6 the LLSA works well:

$$
\rho_{D}^{3}=\epsilon \mu_{\pi}^{2} \quad \rho_{L S}^{3}=-\epsilon \mu_{G}^{2} \quad \epsilon \sim 0.4 \mathrm{GeV}
$$

- Large corrections to the LLSA are possible
- 60% gaussian uncertainty on higher order parameters

$$
V_{c b}=42.00(53) \times 10^{-3}
$$

Higher power corrections

- At $\mathcal{O}\left(1 / m^{4}\right)$ the number of operators become large
$\Rightarrow 9$ at $\operatorname{dim} 7$
$\Rightarrow 18$ at $\operatorname{dim} 8$

Lowest Lying State Saturation Approximation:

$$
\begin{array}{cc}
\langle B| \mathcal{O}_{1} \mathcal{O}_{2}|B\rangle= & \sum_{n}\langle B| \mathcal{O}_{1}|n\rangle\langle n| \mathcal{O}_{2}|B\rangle \\
\uparrow & \uparrow \\
i D_{\alpha} \ldots i D_{\rho} & \text { complete set of states }
\end{array}
$$

At dimension 6 the LLSA works well:

$$
\rho_{D}^{3}=\epsilon \mu_{\pi}^{2} \quad \rho_{L S}^{3}=-\epsilon \mu_{G}^{2} \quad \epsilon \sim 0.4 \mathrm{GeV}
$$

- Large corrections to the LLSA are possible
- 60% gaussian uncertainty on higher order parameters

$$
V_{c b}=42.00(53) \times 10^{-3}
$$

What about New Physics?

- If we allow LFUV between μ and electrons

$$
\tilde{V}_{c b}^{\ell}=V_{c b}\left(1+C_{V_{L}}^{\ell}\right)
$$

- Fitting data from Babar and Belle

$$
\frac{\tilde{V}_{c b}^{e}}{\tilde{V}_{c b}^{\mu}}=1.011 \pm 0.012
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\tilde{V}_{c b}^{e}+\tilde{V}_{c b}^{\mu}\right)=(3.87 \pm 0.09) \% \\
& \frac{1}{2}\left(\tilde{V}_{c b}^{e}-\tilde{V}_{c b}^{\mu}\right)=(0.022 \pm 0.023) \%
\end{aligned}
$$

An alternative for the inclusive determination

- q^{2} moments

$$
R^{*}=\frac{\int_{q^{2}>q_{\mathrm{cut}}^{2}} d q^{2} \frac{d \Gamma}{d q^{2}}}{\int_{0} d q^{2} \frac{d \Gamma}{d q^{2}}} \quad\left\langle\left(q^{2}\right)^{n}\right\rangle=\frac{\int_{q^{2}>q_{\mathrm{cut}}^{2}} d q^{2}\left(q^{2}\right)^{n} \frac{d \Gamma}{d q^{2}}}{\int_{0} d q^{2} \frac{d \Gamma}{d q^{2}}}
$$

- Exploits HQE to reduce numbers of higher dimensional operators [Fael, Mannel, Vos, '18]
- Preliminary result:

$$
\left|V_{c b}\right|=(41.69 \pm 0.63) \times 10^{-3}
$$

What's the issue with the previous determination?

- The q^{2} moments require a measurement of the branching ratio with a cut in q^{2} which is not available yet
- By extrapolating from the current available measurements, the branching ratio is lower then what used
- If the same branching ratios is used, the two methods give the same result The results for inclusive $V_{c b}$ are stable

Comparison with Bernlochner et al '22

Differences:

- Different power counting in the HQET expansion
\Rightarrow Less freedom in higher-order corrections
- Avoid the use of LCSR results
- Partial α_{s}^{2} corrections
- Partial inclusion of the latest FNAL/MILC results

Observations:

- $1 / m_{c}^{2}$ corrections are necessary
- Uncertainties are overall small

$$
\begin{aligned}
R_{D} & =0.288(4) \\
R_{D^{*}} & =0.249(3) \\
\left|V_{c b}\right| & =38.7(6) \times 10^{-3}
\end{aligned}
$$

FNAL/MILC at $q^{2} \neq q_{\text {max }}^{2}$

Major breakthrough: FNAL/MILC released Lattice QCD data for the whole q^{2} region

- FNAL/MILC 21
- HQET@1/ m_{c}^{2}
- BGL w/ exp data
- JLQCD

Good compatibility

- Differences with other theory determinations
- Differences with experimental data \Rightarrow Soften with new Belle 23 analysis, but still there
- JLQCD has better agreement with all determinations

Further investigation is needed

- FNAL/MILC released Lattice QCD data for the whole q^{2} region
- First data set for lattice-only driven determination of $B \rightarrow D^{*}$ form factors

- Combined fit with data has

$$
\chi^{2} / \text { dof }>1
$$

- Poor compatibility with current experimental dataset
- $\left|V_{c b}\right|$ is rather low

$$
\left|V_{c b}\right|=(38.40 \pm 0.74) \times 10^{-3}
$$

- Soon results from HPQCD and JLQCD

