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Introduction
Interaction basis

−LYukawa = Y ijd Q̄
i
LHd

j
R + Y iju Q̄

i
LH̃u

j
R + h.c.

Yq ∼


 • Strong hierarchy between families

• Many free parameters

Mass basis
Lcc ∝ ūiLγµbjLW

+
µ Vij

• Remnant of the change of basis is the CKM matrix

• The CKM is a unitary matrix
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• Remnant of the change of basis is the CKM matrix
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3x3 matrices in flavour space
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Why is Vcb important?

B(B̄s → µ+µ−) ∼ |VtbV ∗ts|2 ∼ |Vcb|2[1 +O(λ2)]
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[Buras, Venturini, ’21]
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Lepton Flavour Universality tests
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RD(∗) =
B(B → D(∗)τ ν̄)

B(B → D(∗)`ν̄)
∼ 3.2σ

Other modes (RJ/ψ, RΛc)

are less significant
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Partonic vs Hadronic

b

c

W

ℓ

νℓ

Introduction and Motivation

Beam energies at B-Factories
tuned to produced B pairs
through e+e` ! ˇ(4S)! B —B.

B(ˇ(4S)! B —B) ı 96%.

Semileptonic B decays used to
extract CKM matrix elements
jVcbj, jVubj

Two approaches to measure
semileptonic B decays:

I Exclusive: a specific final state is
reconstructed (e.g. B ! ı‘⌫)

I Inclusive: All B ! Xq‘⌫ final
states within a region of phase
space are reconstructed.

‰ 3� discrepancy between inclusive
and exclusive measurements.

C. Beleño Exclusive B ! Xu‘⌫ decays ICHEP 2016 2/9

Fundamental challenge to match
partonic and hadronic descriptions

µpartonic = mb µhadronic = ΛQCD
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How can we tame the non-perturbative monsters
Exclusive decays

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi

• Lattice QCD

• QCD SR, LCSR

• HQET (exploit mb,c →∞ limit) + Data driven fits

• Dispersive analysis ⇒ see Ludovico’s talk!

Overview of lattice QCD

I Why lattice QCD ?

I How lattice QCD works

I Limitations of lattice QCD

I Example of observables accessible from lattice QCD

I Masses, decay constant, form factors . . .

I I will not give too many details about algorithmic aspects

b

u
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Lattice QCD
• Lattice QCD does not rely on perturbative expansion to perform calculations ⇒

perfect environment to calculate non-perturbative quantities

• Lattice QCD uses a discretised space-time, with lattice spacing denoted as a
17. Lattice QCD 3

Figure 17.1: Sketch of a two-dimensional slice through the µ − ν plane of a
lattice, showing gluon fields lying on links and forming either the plaquette product
appearing in the gauge action or a component of the covariant derivative connecting
quark and antiquark fields.

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is

the bare coupling constant in the lattice scheme, which can be related (by combining
continuum and lattice perturbation theory) to a more conventional coupling constant
such as that in the MS scheme (see Sec. 17.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In
particular, the lattice breaks Euclidean rotational invariance (which is the Euclidean
version of Lorentz invariance) down to a discrete hypercubic subgroup. One wants to
reduce discretization errors as much as possible. A very useful tool for understanding
and then reducing discretization errors is the Symanzik effective action: the interactions
of quarks and gluons with momenta low compared to the lattice cutoff (|p| " 1/a)
are described by a continuum action consisting of the standard continuum terms (e.g.
the gauge action given in Eq. (17.2)) augmented by higher dimensional operators
suppressed by powers of a [5]. For the Wilson lattice gauge action, the leading

corrections come in at O(a2). They take the form
∑

j a2cjO
(j)
6 , with the sum running

over all dimension-six operators O
(j)
6 allowed by the lattice symmetries, and cj unknown

coefficients. Some of these operators violate Euclidean rotational invariance, and all of
them lead to discretization errors of the form a2Λ2, where Λ is a typical momentum
scale for the quantity being calculated. These errors can, however, be reduced by adding
corresponding operators to the lattice action and tuning their coefficients to eliminate the

June 5, 2018 19:51

• fermions occupy sites on the lattice

• gauge fields are links between sites

• the lattice spacing a acts as a regulator ⇒ QFT built on lattice is finite

• physical results are obtained taking the continuum limit a→ 0

• in practice, lattice QCD calculations are limited only by computational resources
and efficiency of the implementation ⇒ leads to statistical and systematic
uncertainties
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Lattice QCD: uncertainties

• Continuum Limit: controlling the discretisation errors

• Infinite Volume limit: finite space-time might induce shifts of physical quantities
from the measured ones

• Chiral extrapolation: extrapolation of mu and md (or equivalently mπ)

• Heavy quark mass extrapolation to the physical limit

• Operator matching: matching of operators on the lattice with lattice
regularisation scheme onto the continuum
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Heavy Quark Effective Theory

• The Hb momentum is mostly carried
by the b quark

pµ = mbv
µ + kµ

• The residual momentum: kµ ∼ ΛQCD

b

u
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Heavy Quark Effective Theory

• The Hb momentum is mostly carried
by the b quark

pµ = mbv
µ + kµ

• The residual momentum: kµ ∼ ΛQCD

• In the limit mq →∞
Leff = L∞ +O(1/mq)

1. At leading power, all heavy quarks are the same

2. Intrinsic spin-flavour symmetry relates the various form factors

b

u

mass independent
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b→ c case

• For b→ c transitions, we have mb,mc →∞ but mc/mb finite

• Spin-flavour symmetry relates all B(∗) → D(∗) form factors

• The HQET provides a reduction of the free parameters

• At zero recoil (q2 = q2
max), the form factors are normalised
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b→ c case

• For b→ c transitions, we have mb,mc →∞ but mc/mb finite

• Spin-flavour symmetry relates all B(∗) → D(∗) form factors

• The HQET provides a reduction of the free parameters

• At zero recoil (q2 = q2
max), the form factors are normalised

Apart from the zero-recoil point, parameters in the Heavy Quark Expansion are
unknown a priori, and have to be determined from other dynamical sources
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Sum rules

jµ jν

q̄′

q

Πµν(q2) = i

∫
d4x eiqx〈0|T

{
Jµ(x), Jν,†(x)

}
|0〉

• In the region Re(q2) < 0: the correlation function Πµν(q2) is analytic

• For −q2 � Λ2
QCD: quarks propagate at short distances

If both conditions are fulfilled, Πµν(q2) can be expanded in a local OPE

Π(q2) =
1

π

∫ ∞
sth

ds
ImΠ(s)

s− q2

12/26



Quark-Hadron Duality
Amplitudes computed in perturbative QCD can be approximated by

amplitudes computed treating hadrons as fundamental particles

∫ ∞

sth

ds
ImΠ(s)OPE

s− q2
≈

∫ ∞

s0

ds
ImΠ(s)had

s− q2

We can extract information on the hadronic parameters

unknowncalculable
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Amplitudes computed in perturbative QCD can be approximated by

amplitudes computed treating hadrons as fundamental particles

∫ ∞

sth

ds
ImΠ(s)OPE

s− q2
≈

∫ ∞

s0

ds
ImΠ(s)had

s− q2

We can extract information on the hadronic parameters

Spectral representation:

2 Im (Π)µν =
∑

n

〈0|jµ|n〉〈n|jν |0〉dτn(2π)4δ(4)(q − pn)

unknowncalculable

contain hadronic parameters
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The exclusive form factors

• Non perturbative methods evaluate the form factors in precise kinematic points

• The kinematic dependence must be inferred

• The most used ones are:

⇒ BGL parametrisation [Boyd, Grinstein, Lebed, ’95]

⇒ CLN parametrisation + updates [Caprini, Lellouch, Neubert, ’95]

⇒ Dispersive Matrix [Martinelli, Simula, Vittorio, ’21]
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BGL

• Model independent parametrisation

• Uses analytical properties of the form factors

• Conformal mapping

q2 7→ z(q2) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

with t+ pair production threshold and t0 < t+
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The z-expansion

• in the complex plane form factors are real
analytic functions

• q2 is mapped onto the conformal complex
variable z

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

t+ = (mHin +mHfin)2 and t0 can be chosen
to minimise zmax

• q2 is mapped onto a disk in the complex z
plane, where |z(q2, t0)| < 1

• being z small, we can expand any form factor
in z and truncate the series at relatively low
orders

Im(z)

Re(z)

semileptonic

region

subthreshold
resonances

q2
min

q2
max

q2 = t+
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BGL

• Model independent parametrisation

• Uses analytical properties of the form factors

• Conformal mapping

q2 7→ z(q2) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

with t+ pair production threshold and t0 < t+

• |z| � 1, for B → D(∗): |zmax| = 6%

• We can expand as

Fi =
1

Pi(z)φi(z)

ni∑
k=0

aikz
k and

ni∑
k=0

|aik|2 < 1

Pi: Blaschke factors, φi: outer functions ⇒ known quantities

• Bounds + |zmax| ⇒ expect rapid convergence

• aik need to be determined (from data, lattice, sum rules, etc.)
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B → D`ν̄

• The “easy” case:

⇒ only two form factors

⇒ the D is “stable” on the lattice

• Two datasets available, in excellent agreement

• Two lattice determinations available, in excellent agreement

BGL Fit lattice + data

|V Dcb | = (40.5± 1.0)× 10−3 RD = 0.299± 0.003
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0.6

0.7

0.8

0.9

1.0

1.1

1.2
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form factors f+HzL Hupper plotL and f0HzL Hlower plotL

Inputs:
• FNAL/MILC’15

• HPQCD’16

• Babar’09

• Belle’16

[Bigi, Gambino, ’16]
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B → D∗`ν̄

Inputs:

• Belle ’18 differential distribution in the 4 kinematical variables

• LCSR at q2 = 0

• Unitarity constraints on the form factors parameters

• Lattice points at q2 = q2
max

• Form factors expanded up to z2

|V D
∗

cb | = (39.2+1.4
−1.2)× 10−3

RD∗ = 0.253+0.007
−0.006

[Gambino, Jung, Schacht, ’19]
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CLN
• CLN uses Heavy Quark Effective Theory at 1/mb

• Use ansatz at O(1/mb) and O(αs)

Fi = Fi(q
2 = q2

max)×

[(
ai + bi

αs
π

)
ξ +

ΛQCD

2mb

∑
j

cijξ
j
SL +

ΛQCD

2mc

∑
j

dijξ
j
SL

]
• Only 1 leading and 3 sub-leading Isgur Wise function contribute but they are not

known a priori

• The form factors in B(∗) → D(∗) are correlated

CLN ansatz is inconsistent:

• Use Fi(q2 = q2
max) from other source (e.g. Lattice) to properly normalize form

factors

• Use QCDSR for sub-leading IW functions w/o error estimates

• No proper inclusion of errors from higher orders

Note: when CLN was introduced these assumptions were justified as experimental sensitivity was low

and allowed fits with a small set of parameters
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HQET with 1/m2
c

• With the current precision can go beyond CLN and include higher order
corrections

At order 1/m, αs, 1/m2
c :

Fi =
(
ai + bi

αs
π

)
ξ +

ΛQCD

2mb

∑
j

cijξ
j
SL +

ΛQCD

2mc

∑
j

dijξ
j
SL +

(
ΛQCD

2mc

)2∑
j

gijξ
j
SSL

• More conservative use of QCDSR (including uncertainties)

• Can leverage new theory inputs like LCSR and Lattice beyond zero recoil.

• Inclusion of 1/m2
c corrections highly motivated because they are naively of the

same size of 1/mb, αs, and αs/mc corrections

• data independent determination of the IW functions are possible
[1703.05330,1801.01112,1908.09398,1912.09335,2206.11281]
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B → D(∗) at 1/m2
c

• QCD Sum Rules, LCSR, Lattice at q2 = q2
max for B → D∗, Lattice for B → D
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|V Dcb | = (40.7± 1.1)× 10−3

|V D
∗

cb | = (38.8± 1.4)× 10−3

[MB, Jung, van Dyk ’19]
[MB, Gubernari, Jung, van Dyk ’19]
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Lattice calculations at q2 6= q2
max

Comparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )

• FNAL/MILC’21

• HQE@1/m2
c

• Exp (BGL)

• JLQCD prel

• HPQCD’23

Compatible. Slope?

• Deviation HPQCD-BGJvD

• FNAL/MILC close to HPQCD

• Deviation wrt experiment
(RHFLAV

2 (1) = 0.853(17))

Requires further investigation!

• JLQCD “diplomatic” 6 / 14

• FNAL/MILC ’21
• HQE@1/m2

c

• Exp data (BGL)
• JLQCD
• HPQCD ’23

• Tensions between different lattice determinations, experimental data and
non-lattice theory determination

• No consensus yet, ongoing checks

• Lattice calculations drift RD∗ to higher values

• New Belle analysis available

Comparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )

• FNAL/MILC’21

• HQE@1/m2
c

• Exp (BGL)

• JLQCD prel

• HPQCD’23

Compatible. Slope?

• Deviation HPQCD-BGJvD

• FNAL/MILC close to HPQCD

• Deviation wrt experiment
(RHFLAV

2 (1) = 0.853(17))

Requires further investigation!

• JLQCD “diplomatic” 6 / 14
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Summary



The Vcb puzzle

• There is a spread between inclusive and exclusive determinations of Vcb

• Discussion going on different inputs both from experimental and theoretical point
of view

• New Belle analysis data are just out, stay tuned for the results!
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RD∗

• Spread between lattice-based and non-lattice based calculations

• Lattice-based determinations are not yet included in HFLAV
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Summary

• Charged current decays provide the means to probe the Standard Model at high
accuracy

• This requires a high control of hadronic matrix elements

• A lot of work has been done in recent years both from theoretical and
experimental points of view

⇒ The Vcb puzzle is far from being resolved!

⇒ Personal opinion: this is one of the biggest problem in flavour physics nowadays

⇒ New Lattice results are impressive, but they need further investigation

⇒ New experimental analyses are out, results are yet to come, but all data are
welcome!
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Theory framework

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉
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Theory framework

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉

• The Wilson coefficients are calculated perturbatively

• The matrix elements 〈B(p)|On+3,i|B(p)〉 are non perturbative

⇒ They need to be determined with non-perturbative methods, e.g. Lattice QCD

⇒ They can be extracted from data

⇒ With large n, large number of operators

∑
n,i

1
mn

b
Cn,iOn+3,i
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Theory framework

Γ =
1

mB
Im

∫
d4x〈B(p)|T

{
H†eff(x)Heff(0)

}
|B(p)〉

• The Wilson coefficients are calculated perturbatively

• The matrix elements 〈B(p)|On+3,i|B(p)〉 are non perturbative

⇒ They need to be determined with non-perturbative methods, e.g. Lattice QCD

⇒ They can be extracted from data

⇒ With large n, large number of operators

∑
n,i

1
mn

b
Cn,iOn+3,i

loss of predictivity
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Theory framework

Γsl = Γ0f(ρ)
[
1 + a1

(αs
π

)
+ a2

(αs
π

)2

+ a3

(αs
π

)3

−
(

1

2
− p1

(αs
π

)) µ2
π

m2
b

+
(
g0 + g1

(αs
π

)) µ2
G(mb)

m2
b

+ d0
ρ3
D

m3
b

− g0
ρ3
LS

m3
b

+ . . .
]

µ2
π(µ) =

1

2mB
〈B|b̄v(i ~D)2bv|B〉µ µ2

G(µ) =
1

2mB
〈B|b̄v

i

2
σµνG

µνbv|B〉µ

• Coefficients of the expansions are known

• Ellipses stands for higher orders
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(αs
π
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(αs
π

)2

+ a3

(αs
π

)3

−
(

1

2
− p1

(αs
π

)) µ2
π

m2
b

+
(
g0 + g1

(αs
π

)) µ2
G(mb)

m2
b

+ d0
ρ3
D

m3
b

− g0
ρ3
LS

m3
b

+ . . .
]

µ2
π(µ) =

1

2mB
〈B|b̄v(i ~D)2bv|B〉µ µ2

G(µ) =
1

2mB
〈B|b̄v

i

2
σµνG

µνbv|B〉µ

• Coefficients of the expansions are known

• Ellipses stands for higher orders
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How do we constrain the OPE parameters?

  (GeV/c)e
*BE
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Belle

• Lepton energy and hadronic invariant mass
distributions can be used to extract non
perturbative information

• Moments of the kinematic distributions

〈En` 〉 =

∫
E`>E`,cut

dE`E
n
`
dΓ
dE`

ΓE`>E`,cut

R∗ =

∫
E`>E`,cut

dE`
dΓ
dE`∫

dE`
dΓ
dE`

• Similar definition for hadronic mass moments

• The moments give access to the distribution, but not to the normalisation

• They admit an HQE as the rate

⇒ No O(α3
s) terms are known yet
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Scheme conventions
The semileptonic width has a strong dependence on mb: Γ0 ∼ m5

b

Suitable choice for the mass scheme is needed:

• Pole mass scheme

⇒ Renormalon ambiguity

⇒ Perturbative series is factorially divergent

Γsl ∼
∑
k

k!

(
β0

2

αs

π

)k
• We choose to use to b-quark mass and the non perturbative parameters in the

kinetic scheme
[Bigi, Shifman,Uraltsev,Vainshtein]

mkin
b µ = mOS

b − [Λ̄(µ)]pert −
[µ2
π(µ)]pert

2mkin
b (µ)

µ2
π(0) = µ2

π(µ)− [µ2
π(µ)]pert

ρ3
D(0) = ρ3

D(µ)− [ρ3
D(µ)]pert

⇒ Wilsonian cutoff µ = 1 GeV

⇒ Kinetic scheme tailored on the HQE

• We express the charm mass in the MS scheme 4/14



• Theoretical uncertainties are necessary for
the fit stability [Gambino, Schwanda, ’13]

• Different treatments yield to slightly
different results, but all compatible

• The value of |Vcb| is simply extracted as
[Alberti, Gambino, Healey, Nandi, ’14]

|Vcb| =
√
Bc`ν̄
τBΓsl

= (42.21± 0.78)× 10−3
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Inclusion of O(α3
s) results

b-quark mass:

mkin
b (1 GeV) = [4169 + 259αs + 78α2

s
+ 26α3

s
] MeV = (4526± 15) MeV

Semileptonic width

⇒ µ = 1 GeV, µb = mkin
b , µc = 3 GeV

Γsl = Γ0f(ρ)
[
0.9257− 0.1163αs − 0.0349α2

s
− 0.0097α3

s

]
⇒ µ = 1 GeV, µb = mkin

b /2, µc = 2 GeV

Γsl = Γ0f(ρ)
[
0.9257− 0.1138αs − 0.0011α2

s
+ 0.0104α3

s

]

50% reduction!

residual uncertainty ∼ 0.5%

[Fael, Schönwald, Steinhauser, ’20]
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Residual uncertainty

• Residual scale dependence

⇒ Milder including O(α3
s)

⇒ We choose µc = 2 GeV, µb = mkinb /2 and µ = 1 GeV to minimize scale
dependence

• Other sources of uncertainties e.g. higher corrections to the HQE parameters
yield to smaller residual uncertainties

[MB, Capdevila, Gambino, ’21]

2 loop, µb = mkinb , µc = 3 GeV

3 loop, µb = mkinb , µc = 3 GeV

2 loop, µb = mkinb /2, µc = 2 GeV

3 loop, µb = mkinb /2, µc = 2 GeV

7/14



Residual uncertainty

• Residual scale dependence

⇒ Milder including O(α3
s)

⇒ We choose µc = 2 GeV, µb = mkinb /2 and µ = 1 GeV to minimize scale
dependence

• Other sources of uncertainties e.g. higher corrections to the HQE parameters
yield to smaller residual uncertainties

1.2% residual uncertainty

[MB, Capdevila, Gambino, ’21]

2 loop, µb = mkinb , µc = 3 GeV

3 loop, µb = mkinb , µc = 3 GeV

2 loop, µb = mkinb /2, µc = 2 GeV

3 loop, µb = mkinb /2, µc = 2 GeV
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The semileptonic fit

mkin
b mc(2GeV) µ2

π ρ3
D µg(mb) ρLS BRc`ν 103|Vcb|

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb(mb) = 4.198(12) GeV and
mc(mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract mb(mb) = 4.210(22) GeV

[MB, Capdevila, Gambino, ’21]
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mkin
b mc(2GeV) µ2

π ρ3
D µg(mb) ρLS BRc`ν 103|Vcb|

4.573 1.092 0.477 0.185 0.306 −0.130 10.66 42.16
0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

• Constraints from FLAG Nf = 2 + 1 + 1: mb(mb) = 4.198(12) GeV and
mc(mc) = 0.988(7) GeV

• No new experimental input wrt to the one in 1411.6560

• The central value of Vcb is stable

• Without constraints on mb, we extract mb(mb) = 4.210(22) GeV

Vcb = 42.16(32)exp(30)th(25)Γ · 10−3

[MB, Capdevila, Gambino, ’21]
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Higher power corrections

• At O(1/m4) the number of operators become large

⇒ 9 at dim 7
⇒ 18 at dim 8

Lowest Lying State Saturation Approximation: [Mannel, Turczyk, Uraltsev, ’10]

〈B|O1O2|B〉 =
∑
n

〈B|O1|n〉〈n|O2|B〉

At dimension 6 the LLSA works well:

ρ3
D = εµ2

π ρ3
LS = −εµ2

G ε ∼ 0.4 GeV

• Large corrections to the LLSA are possible [Gambino, Mannel, Uraltsev, ’12]

• 60% gaussian uncertainty on higher order parameters

Vcb = 42.00(53)× 10−3
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• 60% gaussian uncertainty on higher order parameters

Vcb = 42.00(53)× 10−3

complete set of statesiDα . . . iDρ

9/14



What about New Physics?

• If we allow LFUV between µ and electrons

Ṽ `cb = Vcb(1 + C`VL
)

• Fitting data from Babar and Belle

Ṽ ecb

Ṽ µcb
= 1.011± 0.012

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

102 × (Ṽ e
cb − Ṽ µ

cb)/2

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

10
2
×

(Ṽ
e cb

+
Ṽ
µ cb
)/

2

flavio

B → D`ν

B → D∗`ν

1

2
(Ṽ ecb + Ṽ µcb) = (3.87± 0.09)%

1

2
(Ṽ ecb − Ṽ µcb) = (0.022± 0.023)%

[Jung, Straub 2018]
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Inclusive Vcb from q2 moments
An alternative for the inclusive determination

• q2 moments

R∗ =

∫
q2>q2cut

dq2 dΓ
dq2∫

0
dq2 dΓ

dq2

〈(q2)n〉 =

∫
q2>q2cut

dq2(q2)n dΓ
dq2∫

0
dq2 dΓ

dq2

• Exploits HQE to reduce numbers of higher dimensional operators [Fael, Mannel, Vos, ’18]

• Preliminary result:
|Vcb| = (41.69± 0.63)× 10−3

What’s the issue with the previous determination?
• The q2 moments require a measurement of the branching ratio with a cut in q2

which is not available yet
• By extrapolating from the current available measurements, the branching ratio is

lower then what used
• If the same branching ratios is used, the two methods give the same result

The results for inclusive Vcb are stable

[Bernlochner et al., ’22]
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Comparison with Bernlochner et al ’22
Differences:
• Different power counting in the HQET expansion

⇒ Less freedom in higher-order corrections

• Avoid the use of LCSR results

• Partial α2
s corrections

• Partial inclusion of the latest FNAL/MILC results

Observations:

• 1/m2
c corrections are necessary

• Uncertainties are overall small

1.0 1.1 1.2 1.3 1.4 1.5

w

0

10

20

30

40

50

d
Γ
/d
w

[1
0−

15
G

eV
]

RD = 0.288(4)

RD∗ = 0.249(3)

|Vcb| = 38.7(6)× 10−3
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FNAL/MILC at q2 6= q2
max

Major breakthrough: FNAL/MILC released Lattice QCD data for the whole q2 region

• FNAL/MILC 21

• HQET@1/m2
c

• BGL w/ exp data

• JLQCD

Good compatibility

• Differences with other theory
determinations
• Differences with experimental data
⇒ Soften with new Belle 23 analysis,

but still there

• JLQCD has better agreement with all
determinations

Further investigation is needed

[2105.14019]
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FNAL/MILC at q2 6= q2
max

• FNAL/MILC released Lattice QCD data for the whole q2 region

• First data set for lattice-only driven determination of B → D∗ form factors

• Combined fit with data has
χ2/dof > 1

• Poor compatibility with current
experimental dataset

• |Vcb| is rather low

|Vcb| = (38.40± 0.74)× 10−3

• Soon results from HPQCD and
JLQCD

[2105.14019]
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