

Studies on τ decays at Belle II

Laura Zani on behalf of the Belle II collaboration Pisa, 2023.05.17

*laura.zani@roma3.infn.it

Outline

- Motivation
- Experimental requirements
 - \rightarrow Direct searches for lepton flavor violation
 - \rightarrow Precision tests of SM

Why τ decays?

Weight: heaviest charged leptons, massive enough to **decay into hadrons**

 $^ M_\tau \sim$ 17 x $M_{\mu_{\rm r}} \sim$ 3500 x $M_{\rm e}$

lifetime: 290 fs, not a long-lived particle!

particular signs: allows a clean theoretical analysis of the *hadronization*, determination of standard model (SM) parameters...

 \rightarrow probe non-SM physics in mass-dependent couplings

 \rightarrow does the third lepton generation preferentially couple to non-SM physics?

Lepton as discovery tools

Leptons are powerful tools to explore beyond SM physics

- QED precise computations
- Clean physics event

- precision measurements of the tau properties
 - *tau lepton mass*, lifetime, branching ratios
 - *tests* for deviations from SM predictions

• searches for forbidden decays of tau

E=mc²

Direct production

⁻ observation of lepton flavor violation (LFV) in tau decays: $\tau \rightarrow \ell \alpha$, $\tau \rightarrow \ell \Phi$

The challenges

High precision measurements of the SM properties

 Control of systematic sources → excellent understanding of the experiment performance and background description required to improve results mainly systematically limited

e.g. tau mass, branching fractions measurement

< fractions of permille level

World's **leading sensitivities** for direct searches

- Largest statistics → attain highest luminosity, collect (unique) data sets suitable to study rare processes
 - + devise new techniques to **increase** the signal **efficiency** while keeping background under control e.g. LFV decays, $\tau \rightarrow \ell \Phi$ $< 10^{-8}$ level

Lepton flavor violation

- Neutral lepton flavor violation in the Standard Model (SM) due to *neutrino masses and oscillations*
- Charged Lepton Flavor Violation (LFV) via SM weak interaction charged currents + neutrino mixing < O(10-50), below current and future experiments reach → observation of LFV decays is per se a proof of non-SM physics!

Experimental requirements: B-factories

- Profit from clean environment at lepton colliders + hermetic detector: Belle II at SuperKEKB asymmetric-energy e+ecollider
 - \rightarrow operates mainly at $\sqrt{s}=$ 10.58 GeV: $\sigma_{_{bb}}\sim\sigma_{_{\tau\tau}}\sim$ 1 nb, B & τ factory
 - \rightarrow known initial state
 - \rightarrow efficient reconstruction of neutrals ($\pi^{_0}\!,\,\eta),$ recoiling system and missing energy
 - \rightarrow specific **low-multiplicity triggers:** single track/muon/photon (previously not available at Belle)

Unprecedented luminosity.

 4.7×10^{34} cm⁻²s⁻¹ world record

- Currently on first shutdown since July 2022
- Accumulated 424 fb⁻¹ (~ Babar, ~ half of Belle) and unique energy scan samples

Tau topologies and signatures

- Tau pairs in $e^+e^-\!\!\!\!\!\to \tau^+\tau^-$ events produced back-to-back in CM system
- Possible to separate them in two opposite hemispheres defined by the plane perpendicular to the thrust axis

Usually tag side reconstructed in a specific topology to suppress background, mainly from continuum e+e→ qq
 → allows to reach excellent purity

Pisa, 2023/05/17

Direct searches: new invisible boson in tau decays, $\tau \rightarrow \ell \alpha$

$\tau \rightarrow l\alpha$: motivation and strategy

- τ decays to new LFV bosons decaying invisibly predicted in many models [1]
 See L.Calibbi's talk
- Previous searches at ARGUS [2](~ 0.5/fb) \rightarrow Belle II analysis relies 120 x luminosity
- Search for the process $e^+e^- \rightarrow \tau_{sig} (\rightarrow \ell \alpha) \tau_{tag} (\rightarrow 3\pi \nu)$, with $\ell = e \text{ or } \ell = \mu$
- Split event in two hemispheres based on the *thrust axis:*
 - use 3x1-prong decays (3 track on the tag side, 1 track on the signal side)
 - exploit the shape differences: 2-body decay of signal (peaking in some kinematics features) over 3-body decay of irreducible background from τ_{SM}→ℓνν

$\tau \rightarrow l\alpha$: *pseudo-rest* frame

- Shape differences more prominent in the rest frame: approximate $\mathbf{\tau}_{sig}$ pseudo-rest frame as $E_{sig} \sim \sqrt{s/2}$ and $\hat{p}_{sig} \approx -\vec{p}_{\tau_{tae}} / |\vec{p}_{\tau_{tae}}|$
- Discriminating variable: normalized lepton energy x₁
 - Bump hunt above broad spectrum from $\tau_{sM} \rightarrow \ell \nu \nu$

$\tau \rightarrow l\alpha$: results

Phys. Rev. Lett. 130, 181803

- No significant excess found in 62.8 fb-1
- Set 95% CL upper limits on BF ratios of $BF(\tau_{sig} \rightarrow \ell \alpha)$ normalized to $BF(\tau_{SM} \rightarrow \ell \nu \nu)$

Between 2-14 times more stringent than previous limits

Direct searches: LFV decays $\tau \rightarrow \ell \Phi$

$\tau \to \ell \Phi$: novel analysis technique

- New mediators [1] may enhance LFV $\tau \rightarrow \ell \Phi$ decays and accommodate for flavor anomalies in LFU tests
- 10^{-4} Low-energy LHCb. BaBar • Previous searches at Belle (854/fb) [2] $\rightarrow K \mu \tau$ 10^{-5} observables with tagged approach $(\mathbf{\tau}_{tag} \rightarrow \ell/\mathbf{h}(\mathbf{v}_{l})\mathbf{v}_{\tau})$ 10^{-6} Direct searches at LHC (and $\mathcal{B}(B)$ 3 ab^{-1} 10^{-7} $\mathcal{B}_{\text{III}}^{90}(e\phi) \; (\times 10^{-8}) \qquad \mathcal{B}_{\text{III}}^{90}(\mu\phi) \; (\times 10^{-8})$ $140 {\rm ~fb}^{-1}$ projections) 10^{-8} exp. / obs. exp. / obs. $m_{U_1} = 1.8 \text{ TeV}$ Belle – II^I Belle Belle 4.3 / 3.1 4.9 / 8.4 10^{-12} 10^{-16} 10^{-14} 10^{-10} 10^{-8} 10^{-6} $\mathcal{B}(\tau \to \mu \phi)$ \rightarrow Increase signal efficiency: reconstruct explicitly only signal side as a lepton (e, μ) $\phi \rightarrow K^+ K^ + \Phi (\rightarrow K^+K^-, BR\sim 50\%)$, no requirement on the tag side (untagged reconstruction) Tsig τ_{tag} - Exploit signal and event features in **BDT classifiers** to suppress background ? $ightarrow arepsilon_{sig}$ = 6.5% (6.1%) for muon(electron) mode, ~ 2 x Belle

L.Zani - τ decays studies at Belle II

[1] Andrei Angelescu, et al., Phys. Rev. D 104, 055017 (2021),

[2] Y. Miyazaki et al., Belle, Phys. Lett. B 699 (2011)

Pisa, 2023/05/17

$\tau \rightarrow \ell \Phi$: signal regions

- Exploit kinematics of the signal as *neutrinoless* decays
 - $^ M_\tau$ expected to peak at known tau mass
 - $\Delta E_{\tau} = E^*_{_{sig}} \sqrt{s/2}$ peaks at 0 \rightarrow up to initial/final state radiation (ISR, FSR) effects
- Define analysis and signal box regions in the the $(M_{\tau}, \Delta E_{\tau})$ plane, in units of fitted signal resolutions

Pisa, 2023/05/17

L.Zani - τ decays studies at Belle II

$\tau \to \ell \Phi$: yields extraction

• Poisson counting experiment approach in signal regions in $M_{\tau} \, \text{and} \, \Delta E_{\tau} = E^*_{_{sig}} - \sqrt{s/2} \, \text{plane}$

 \rightarrow expected background evaluated from data <code>reduced</code> <code>sidebands</code> with scaling from simulation

Muon mode: $\tau \rightarrow \mu \Phi$

Result Region		Mode		
nesuti	rtegion	$e\phi$	$\mu\phi$	
$N_{ m exp}$	\mathbf{SR}	$0.23^{+0.55}_{-0.21} { m\ stat}$	$0.36^{+0.39}_{-0.23}$ stat	
$N_{ m obs}$	\mathbf{SR}	$2.0^{+2.6}_{-1.3}$ stat	$0.0^{+1.8}_{-0.0}$ stat	

 $\Delta E_{\tau} [GeV]$ Belle II (Preliminary) MC background ΔE₇ [GeV Belle II (Preliminary) MC background - RSB 1.0 0.6 Data Data : $\int \mathcal{L}dt = 190 \text{ fb}^{-1}$ Data : $\int \mathcal{L}dt = 190 \text{ fb}^{-1}$ Data SR MC : $\int \mathcal{L}dt = 2 \, \mathrm{ab}^{-1}$ MC : $\int \mathcal{L}dt = 2 \text{ ab}^{-1}$ 0.8 0.4 0.5 0.2 0.2 0.0 0.0 -0.2-0.2-0.5-0.4-0.81.675 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.7 1.61.8 1.9 2.0 M_{τ} [GeV/c²] M_{τ} [GeV/c²]

Electron mode: $\tau \rightarrow e \Phi$

$\tau \rightarrow \ell \Phi$: results

Conf. paper arXiv: 2305.04759

- No significant excess in 190 fb-1
- Set 90% CL upper limits on the BF with CL_s method: $\mathcal{B}_{UL}(\tau \to \ell \phi) = \frac{s}{L \times 2\sigma_{\tau\tau} \times \varepsilon_{\ell\phi}}$,

L.Zani - τ decays studies at Belle II

Precision measurement: tau lepton mass

Measurement of the τ mass

- Lepton properties are **fundamental parameters** of the SM and need to be measured with the **highest precision**
 - $^-$ tau mass known with ${\sim}10^{\scriptscriptstyle3}$ worse precision than the muon mass
 - Uncertainties important in lepton flavor universality tests of SM

- Two possible ways to measure the mass:
 - pair-production cross section scan, used by BESIII (most precise PDG result so far)
 - $\ensuremath{^\circ}$ vary collision energy around the tau pair production threshold
 - pseudomass method, developed by ARGUS, exploited at B-factories (and in the presented study here!)
 - Exploit the kinematics of the three charged pions in $\tau_{_{sig}} \to 3 \pi \nu_{\tau}\, decays$

τ mass: pseudomass technique

- Reconstruct $e^+e^- \rightarrow \tau_{tag} \tau_{sig}$ events with $\tau_{tag} \rightarrow \ell \nu_{I} \nu_{\tau} / \pi(\pi^0) \nu_{\tau}$ and $\tau_{sig} \rightarrow 3\pi \nu_{\tau}$ as four tracks and no additional high energy photons in the event
- Access m_{τ} with *pseudo-mass* technique M_{\min} : $\sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 E_{3\pi}^*)(E_{3\pi}^* P_{3\pi}^*)} \le M_{\tau}$
- Fit to the end point with an empirical function, smeared edge due to *detector resolution effects* and larger *tails because of ISR*

L.Zani - τ decays studies at Belle II

 ν_{τ}

hadrons

 τ

Tag

 ν_{τ}

 \hat{n}_{thrust}

τ mass: precision challenge

• Excellent control of systematic uncertainties thanks to precise understanding of beam energies and tracking: $M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le M_{\tau}$

Systematic evaluation: momentum scale

- Bias in the measured particle momenta due to imperfect magnetic field or mis-modeling in material budget impact the endpoint position \rightarrow bias the mass extraction $M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)} (E_{3\pi}^* - P_{3\pi}^*)$
- Use $D_0 \rightarrow K^+ \pi^-$ as standard candle:
 - extract scale factors for kaon and pions by comparing D⁰ mass peak w.r.t PDG mass.
 - corrections dependent on $\text{cos}\theta_{\text{track}}$ and charge
- Cross check the corrections on other known mass peaks
- Consider several systematic effects in the SF determination:
 - PDG mass uncertainty, peak position modeling, additional kinematics dependence, detector misalignment

impact on tau mass: **0.06 MeV** \rightarrow below fractions of permille level!

 $\cos(\theta_{\nu})$

World's most precise measurement

• World's most precise measurement of $m_{ au} = 1777.09 \pm 0.08_{
m stat} \pm 0.11_{
m sys}~
m MeV/c^2$

Lepton Flavor Universality (LFU) tests

• LFU in SM assumes all three leptons have equal coupling strength (g_1) to the charged gauge bosons of the electroweak interaction

$$\begin{aligned} \frac{\mathcal{A}(\tau \to \mu \nu \bar{\nu})}{\mathcal{A}(\mu \to e \nu \bar{\nu})} \Big|_{\text{EXP}} &= 1.0029(14), \\ \frac{\mathcal{A}(\tau \to \mu \nu \bar{\nu})}{\mathcal{A}(\tau \to e \nu \bar{\nu})} \Big|_{\text{EXP}} &= 1.0018(14), \\ \frac{\mathcal{A}(\tau \to e \nu \bar{\nu})}{\mathcal{A}(\mu \to e \nu \bar{\nu})} \Big|_{\text{EXP}} &= 1.0010(14), \end{aligned}$$

• Many models predict **new forces** violating LFU (singly-charged scalar Φ [1]):

$$\delta(\ell_i \to \ell_j \nu \nu) = \frac{\mathcal{A}_{NP}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)}{\mathcal{A}_{SM}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{\left|\lambda_{ij}^2\right|}{g_2^2} \frac{m_W^2}{m_\phi^2} = A_{EXP} / A_{SM} - 1$$

$\tau {\rightarrow}$ Ivv LFU test

- Tau decays allow high precision tests of LFU by measuring R_{μ}

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto \mathbf{R}_{\mu} = \frac{\mathscr{B}[\tau^{-} \to \mu^{-} \bar{\nu_{\mu}} \nu_{\tau}]}{\mathscr{B}[\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau}]} \text{ with } \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{R_{\mu} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}}$$

- Previous best results from BaBar (467/fb) [1]
 - Reconstruct (3x1)-prong decays in tau pair events
 - 0.4% precision dominated by systematic contribution of particle identification (PID)

Babar systematics:

 $\frac{\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \overline{\nu}_{e} \nu_{\tau})} = (0.9796 \pm 0.0016 \pm 0.0036)$

Systematic uncertainti	es:
Particle ID	0.32
Detector response	0.08
Backgrounds	0.08
Trigger	0.10
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01
Radiation	0.04
$\mathcal{B}(au^- o \pi^- \pi^- \pi^+ u_ au)$	0.05
$\mathcal{L}\sigma_{e^+e^- o au^+ au^-}$	0.02
Total [%]	0.36

$\tau {\rightarrow}$ Ivv LFU test

- Tau decays allow high precision tests of LFU by measuring R_{μ}

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto \mathbf{R}_{\mu} = \frac{\mathscr{B}[\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}]}{\mathscr{B}[\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau}]} \text{ with } \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{R_{\mu} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}}$$

- Previous best results from BaBar (467/fb) [1]
 - Reconstruct (3x1)-prong decays in tau pair events

$$\begin{bmatrix} \frac{\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \overline{\nu}_e \nu_\tau)} &= (0.9796 \pm 0.0016 \pm 0.0036) \end{bmatrix}$$

- 0.4% precision dominated by systematic contribution of particle identification (PID)

Babar systematics:

Systematic uncertainties:				
Particle ID	0.32			
Detector response	0.08			
Backgrounds	0.08			
Trigger	0.10			
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01			
Radiation	0.04			
$\mathcal{B}(\tau^- o \pi^- \pi^- \pi^+ u_ au)$	0.05			
$\mathcal{L}\sigma_{e^+e^- \to \tau^+ \tau^-}$	0.02			
Total [%]	0.36			

• Major improvement at Belle II

- Several dedicated *low-multiplicity triggers* based on calorimeter cluster properties
- Drop *hadron identification* variable and exploit E/p and pT selections to separate leptons from pions
 - \rightarrow Eventually explore *additional topologies* (add the (1x1)-prong signature)

$\tau {\rightarrow}$ Ivv LFU test prospects at Belle II

- improved trigger performance and better lepton identification through BDT classifiers (pion mis-ID rate < 1%)
- Main showstopper to add (1x1) decays is the development of dedicated trigger line

$\tau {\rightarrow}$ Ivv LFU test prospects at Belle II

Conclusions

• Belle II has *unique sensitivity* for direct searches for LFV τ decays and *world's leading precision* capabilities in SM tests

 \rightarrow Main handles for world's best results are new **inclusive technique** in τ -pair reconstruction, dedicated **triggers** and excellent control of **systematic uncertainties**

- * Search for invisible LFV scalar in $\tau \to I\alpha$ Phys. Rev. Lett. 130, 181803
- * Search for LFV $\tau \rightarrow I\Phi$ decays Conf. paper arXiv: 2305.04759
- * Measurement of the τ lepton mass

 \rightarrow 424 fb⁻¹ already on tape, more results on larger statistics and with improved analyses in the pipeline

Thanks for your attention!

SM	LFV
 τ lifetime measurement 	• $\tau^- \rightarrow 3l$
• $\tau \rightarrow \pi/K + v_{\tau}$ and $ V_{us} $ • τ EDM and MDM	• $\tau \to \ell \gamma$
• CPV: $\tau \rightarrow K_s \pi v_r, \tau \rightarrow 3h^2 v$	• $\tau^- \rightarrow l \varrho$
	• $\tau^- \to \ell K_s$
What's next?	• $\tau^- \rightarrow \Lambda \pi$

Backup

Tau signatures and physics requirements

• Experimental requirements:

- good missing energy reconstruction
 - clean and well understood initial state
 - hermetic detector
- excellent vertexing and tracking capabilities
- ability to trigger low-multiplicity event

These are all met at B factories!

• tau pair production cross section comparable to that of B pairs

 $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.11 \text{ nb}$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$

⇒ B-Factories are also tau factories!

Belle II Luminosity

Total Integrated luminosity for good runs:

- Total integrated luminosity: 424 fb⁻¹
- Total integrated luminosity at the Y(4S) resonance: 363 fb⁻¹
- Total integrated luminosity below Y(4S) resonance: 42 fb⁻¹
- Total integrated luminosity above Y(4S) resonance: 19 fb⁻¹

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCIe40)
- replacement of aging components
- additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

 \rightarrow On track to resume data taking next winter with new pixel detector

Previous searches for LFV $\tau \to IV^{\scriptscriptstyle 0}$ decays

BaBar Collaboration, B. Aubert et al.,					
Improved Limits on Lepton Flavor Violating Tau Decays to $I \varphi$, $I \rho$, $I K^*$, a	nd IR*,				
Phys. Rev. Lett. 103 (2009).					

Mode	ε [%]	$N_{ m bgd}$	$N_{\rm obs}$	$N_{ m UL}^{90}$	$\mathcal{B}^{90}_{\mathrm{exp}}$	$\mathcal{B}^{90}_{\mathrm{UL}}$
$e\phi$	6.43 ± 0.16	0.68 ± 0.12	0	1.8	5.0	3.1
$\mu\phi$	5.18 ± 0.27	2.76 ± 0.16	6	8.7	8.2	19
$e\rho$	7.31 ± 0.18	1.32 ± 0.17	1	3.1	4.9	4.6
$\mu \rho$	4.52 ± 0.41	2.04 ± 0.19	0	1.1	8.9	2.6
eK^*	8.00 ± 0.19	1.65 ± 0.23	2	4.3	4.8	5.9
μK^*	4.57 ± 0.36	1.79 ± 0.21	4	7.1	8.5	17
$e\overline{K}^*$	7.76 ± 0.18	2.76 ± 0.28	2	3.2	5.4	4.6
$\mu \overline{K}^*$	4.11 ± 0.32	1.72 ± 0.17	1	2.7	9.3	7.3

Belle Collaboration, Y. Miyazaki et al.,				
Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson,				
Phys. Lett. B 699 (2011).				

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^- \to \mu^- \rho^0$	7.09	1.48 ± 0.35	5.3	0	1.34	1.2
$\tau^- \to e^- \rho^0$	7.58	0.29 ± 0.15	5.4	0	2.17	1.8
$\tau^- \to \mu^- \phi$	3.21	0.06 ± 0.06	5.8	1	4.24	8.4
$\tau^- \to e^- \phi$	4.18	0.47 ± 0.19	5.9	0	2.02	3.1
$\tau^- \to \mu^- \omega$	2.38	0.72 ± 0.18	6.1	0	1.76	4.7
$\tau^- \to e^- \omega$	2.92	0.30 ± 0.14	6.2	0	2.19	4.8
$\tau^- \to \mu^- K^{*0}$	3.39	0.53 ± 0.20	5.5	1	3.81	7.2
$\tau^- \to e^- K^{*0}$	4.37	0.29 ± 0.14	5.6	0	2.17	3.2
$\tau^- \to \mu^- \bar{K}^{*0}$	3.60	0.45 ± 0.17	5.5	1	3.90	7.0
$\tau^- \to e^- \bar{K}^{*0}$	4.41	0.08 ± 0.08	5.6	0	2.34	3.4

