Three-body Decays of τ and All That

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

- 1. Motivation
- $2. \tau$
- 3. B/D decays
- 4. Conclusions

Motivation

A number of physical problems involve studies of mass spectra and Dalitz plots for various three-body final states in τ , D and B meson decays:

- Decays of τ lepton to three pions $-\pi^-\pi^+\pi^-\nu_{\tau}$ and $\pi^-\pi^0\pi^0\nu_{\tau}$ have a large branching fraction of about 18.3% and provide a copious source of 3π in the axial-vector state $a_1(1260)$ ($a_1(1640)$?)
- Cabibbo-suppressed decays to $K\pi\pi\nu_{\tau}$ ($K^{-}\pi^{+}\pi^{-}\nu_{\tau}$, $K^{-}\pi^{0}\pi^{0}\nu_{\tau}$, $K^{0}_{S(L)}\pi^{-}\pi^{0}\nu_{\tau}$) have in total $\mathcal{B} \sim 1\%$ resulting in huge data samples sufficient for detailed studies of production mechanisms via Dalitz plots
- Cabibbo-allowed decays to $K\bar{K}\pi\nu_{\tau}$ $(K^{+}K^{-}\pi^{-}\nu_{\tau}, K^{o}\bar{K}^{0}\pi^{-}\nu_{\tau}, K^{-}K^{0}\pi^{0}\nu_{\tau})$ $(\mathcal{B} \sim 0.5\%)$ are good for K^{*} spectroscopy and Wess-Zumino anomaly studies
- Studies of CP violation in the $D^0 \bar{D}^0$ and $B^0 \bar{B}^0$ systems deal with huge data samples collected at B factories and are impossible without clear understanding of the 3-body dynamics

This necessitates preparing adequate Monte Carlo generators

K^* Mesons with Three-body Decays

 τ decays into kaons can improve our knowledge of K^* spectroscopy

Meson	J^P	Decay Modes
$K_1(1270)$	1+	$K\rho, K_0^*(1430)\pi, K^*(892)\pi$
$K_1(1400)$	1+	$K^*(892)\pi$
$K^*(1410)$	1-	$K^*(892)\pi$
$K_2^*(1430)$	2+	$K^*(892)\pi, \ K\rho$
K(1460)	0-	$K^*(892)\pi, K\rho, K_0^*(1430)\pi$
$K_2(1580)$	2-	$K^*(892)\pi, K_0^*(1430)\pi$
$K_1(1650)$	1+	$K\pi\pi$
$K^*(1680)$	1-	$K\rho, \ K^*(892)\pi$

with $K^*(892)$, $K_0^*(1430)$ predominantly decaying to $K\pi$

Pattern of $a_1(1260)$ decays from $\tau \to 3\pi\nu_{\tau}$

 $\tau \to 3\pi\nu_{\tau}$ decays are known to be dominated by the $\tau \to a_1(1260)\nu_{\tau}$. CLEO used 37k $\tau^- \to \pi^-\pi^0\pi^0\nu_{\tau}$ to study mechanisms of $a_1(1260)$ decays

Fractions of various mechanisms in % (do not sum to 100% because of interference effects)

$ ho\pi_S$	$ ho\pi_D$	$\rho(1450)\pi_S$	$\rho(1450)\pi_D$
60.2	1.3	0.6	2.0
$f_0(600)\pi$	$f_0(1370)\pi$	$f_2(1270)\pi$	$Kar{K}^*$
18.8	7.4	1.2	3.3

D.M. Asner et al., Phys. Rev. D61, 012002 (2000)

CMD-2 used the $a_1\pi$ dominance in $e^+e^- \rightarrow 2(\pi^+\pi^-)$ to study $a_1 \rightarrow 3\pi$ R.R. Akhmetshin et al., Phys. Lett. B 466, 392 (1999)

$$\tau^- \to K^- \pi^+ \pi^- \nu_\tau \text{ at CLEO} - I$$

CLEO used 7k $\tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$ decays to study decay mechanisms

- They assume that decays are saturated by $K_1(1270)$ and $K_1(1400)$
- The fraction of $K_1(1270)$ is $0.66 \pm 0.19 \pm 0.13$
- The fraction of $K\rho$ in $K\pi\pi$ is $0.48 \pm 0.14 \pm 0.10$
- There are significant cross-feed backgrounds, i.e., backgrounds from other τ decays (e.g., with additional π^0)

D.M. Asner et al., Phys. Rev. D62, 072006 (2000)

S.Eidelman, BINP p.6/23

S.Eidelman, BINP p.7/23

S.Eidelman, BINP

$$\tau^- \to h^- h'^+ h''^- \nu_\tau$$
 at Belle – I

Belle made a high-statistics (×100 compared to LEP and CLEO) study of τ decays with three charged hadrons (π^{\pm} , K^{\pm}) in the final state. They perform unfolding of the raw spectra to measure branching fractions and obtain invariant mass spectra

Data samples

Mode	$\pi^-\pi^+\pi^-\nu_{ au}$	$K^-\pi^+\pi^-\nu_{ au}$	$K^-K^+\pi^-\nu_{ au}$	$K^-K^+K^-\nu_{ au}$
Events	$8.9 \cdot 10^{6}$	$7.9 \cdot 10^5$	$1.1\cdot 10^5$	$3.2\cdot10^3$

M.J. Lee et al., Phys. Rev. D81, 113007 (2010)

S.Eidelman, BINP

p.10/23

S.Eidelman, BINP

$$\tau^- \to \phi K^- \nu_{\tau}$$
 at Belle

Belle discovered a rare decay $\tau^- \to \phi K^- \nu_\tau \ (\mathcal{B} \sim 4 \cdot 10^{-5})$ and observed 550 events with three final kaons

K. Inami et al., Phys. Lett. B643, 5 (2006)

Frascati, RMC11 March 28-29, 2011

S.Eidelman, BINP p.13/23

Some general comments about models for τ

- 1. The existing version of TAUOLA is mostly based on the old models created by H. Kühn and Co in early 90'ies
- 2. There exist partial data-driven updates from CLEO/ALEPH
- 3. There are data-driven models using adaptable MC approach (Z.Was) and theory-driven with some parameters fit from data:
 - Models based on Resonance Chiral Theory (Valencia group), $\eta\pi\pi$ P. Roig. Nucl. Phys. B (Proc. Suppl.) 207, 145 (2010); 3π D. Gomez Dumm et al., Phys. Rev. D 81, 034031 (2010); $K\bar{K}\pi$ D. Gomez Dumm et al., Phys. Lett. B 685, 158 (2010)
 - CVC based models (Novosibirsk group), 4π A. Bondar, SE, . . . , ZW et al., Comp. Phys. Commun. 146, 139 (2002); $\eta\pi\pi$ V. Cherepanov and SE, JETP Lett. 89, 429 (2009)
- 4. Most of the models are based on fits of mass spectra. not enough for high precision angular info needed!

Summary of $e^+e^- \to \eta \pi^+\pi^-$ Measurements

BaBar data are much more precise than those at DM1, DM2 above 1.4 GeV Are BaBar points higher below 1.4 GeV?

V. Cherepanov and SE, arXiv:1012.2564

Comparison with Belle – I

In general, τ spectra are consistent with e^+e^-

Comparison with Belle – II

This can be seen better from the "difference" plot taking into account a 5.3% syst. error of Belle

Difference between new (BaBaR) and old + SND e^+e^- data

Some excess of the "BaBaR" data is confirmed although critical analysis of the fits needed

Work (with HC and ZW) is in progress to update PHOKHARA and TAUOLA

Three-body Decays of D and B Mesons

- ullet Studies of CP violation as well as of mechanisms of D and B meson decays require good description of the Dalitz plots
- This necessitates creation of complicated models involving a large number of $\pi\pi$, $K\bar{K}$ and $K\pi$ resonances taking into account various fine effects, e.g., $\rho \omega$ interference
- In contrast to τ lepton decays, there is no theory to describe such decays, not even QCD-based models \Rightarrow simple isobar-type models are used (sum of Breit-Wigners)

$$D^0 \to K_S^0 \pi^+ \pi^-$$
 at Belle – I

Belle used 534k events of $D^0 \to K_S^0 \pi^+ \pi^$ to study $D^0 - \bar{D}^0$ mixing and CP violation using time-dependent Dalitz plot analysis.

Their model includes a number of resonances:

$$K^*(892)^{\pm}$$
, $K^*(1410)^{\pm}$, $K_0^*(1430)^{\pm}$, $K_2^*(1430)^{\pm}$, $K^*(1680)^{\pm}$, ρ , ω , $f_0(980)$, $f_0(980)$, $f_0(980)$, $f_0(980)$

L.-M. Zhang et al., Phys. Rev. Lett. 99, 131803 (2007)

Here
$$m_{\pm}^2 = m_{K_S \pi^{\pm}}^2$$

March 28-29, 2011

S.Eidelman, BINP p.22/23

Conclusions

- We already have and expect even higher precision measurements \Rightarrow new requirements for both experiment and analysis
- Higher precision imposes special constraints on the description of physical processes, i.e. their dynamics, in particular using full information about events
- There is serious progress with studies of three-body systems in τ lepton and D/B meson decays
- We have to learn how to better model the observed dynamics and provide good input for the corresponding MC generators