Hadronic Light-by-Light Scattering in Muon *g* – 2: from the INT Seattle HLbL Workshop

Fred Jegerlehner* HU Berlin/DESY Zeuthen, fjeger@physik.hu-berlin.de

Working Group on Radiative Corrections and Generators for Low Energy Hadronic Cross Section and Luminosity Frascati, March 28-29, 2011

F. Jegerlehner

Radio MonteCarLow WG meeting, Frascati, 2011

Abstract

A summary of the "INT Workshop on The Hadronic Light-by-Light Contribution to the Muon Anomaly" held at INT Seattle, February 28 - March 4, 2011. Goal of the WS was working out a "White Paper" in support of the new g - 2experiment planned (and approved) at Fermilab. Working groups:

Models for HLbL: de Rafael, Bijnens, Nyffeler, Vainshtein, and others

HLbL from lattice QCD: Blum, Jansen, Hashimoto, Kronfeld

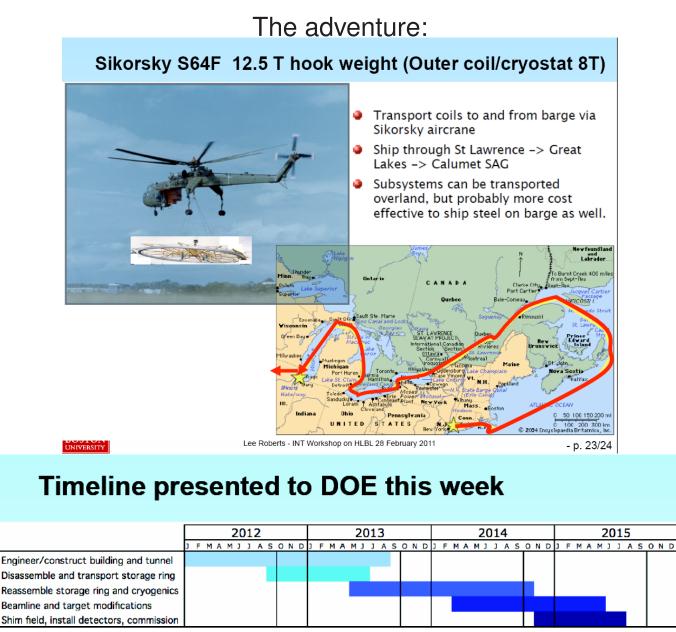
Data for HLbL: J., Denig, Morriciani, Eidelman, Czyż

Original idea for the WS: previous attempts to get funding for an upgraded BNL muon g - 2 experiment failed also because experts raised doubts whether theory is able to predict HLbL for Muon g - 2. Lee Roberst spokesperson of E989 Collaboration got upset about HLbL theoreticians. David Herzog proposes INT WS to work out convincing evidence that theory is able to provide reliable estimates of a_{μ} (HLbL). Decision for the shutdown of TEVATRON, changed situation for particle physics in US: muon g - 2 at Fermilab now first priority, second is support for super KEK B,...

Topics of Talk:

The hadronic LbL: setup and problems
Models and Controversies
Data constrain Models
A role for lattice QCD
Present & Future

The Good News first:


Fermilab E989: Approved January 2011

- Re-locate the (g 2) storage ring to Fermilab
- Use the many proton storage rings to form the ideal proton beam
- Use one of the antiproton rings as a 900 m decay line to produce a pure muon beam
- Accumulate 21 times the statistics
- Improve the systematic errors
- Final goal: At least a factor of 4 more precise over E821

Lee Roberts - INT Workshop on HLBL 28 February 2011

- p. 22/24

F. Jegerlehner

Radio MonteCarLow WG meeting, Frascati, 2011

On this timescale it's essential that the theory improve

- Lowest-order hadronic
 - BaBar and Belled have additional unanalyzed data
 - especially important for multihadron channels
 - VEPP2000 at Novosibirsk
 - CMD3
 - SND
- HLBL
 - Agreement among theorists and additional work
 - KLOE 2 photon physics
 - BES, Mainz

Lee Roberts - INT Workshop on HLBL 28 February 2011

- p. 25/25

The new muon g - 2: Fermilab E989

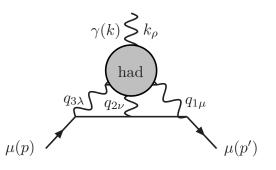
 $\delta a_{\mu} = 16 \times 10^{-11}$ by 2015

•Magnetic field: $\frac{\delta \langle B \rangle_{\mu}}{\langle B \rangle_{\mu}} \le 2 \times 10^{-8}$

Requires 10% error on HLbL

HLbL white paper in progress

Present:

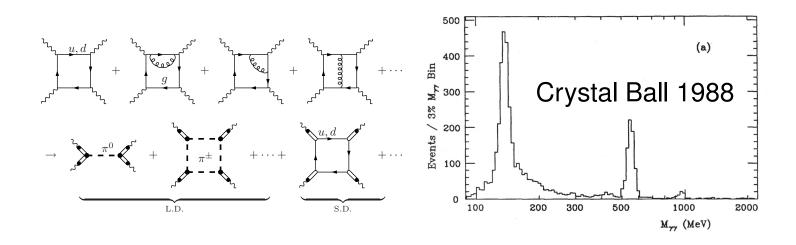

 $\Box a_{\mu}^{\exp} = 116\,592\,089(63) \times 10^{-11} ; \ a_{\mu}^{SM} = 116\,591\,793 \pm 51 \times 10^{-11}$

E989: statistics 21×; total error factor 4 more precise $\sigma_{stat} = 0.1 \text{ ppm} \\ \sigma_{syst} = 0.1 \text{ ppm}$ $\sigma_{tot} = 0.14 \text{ ppm}$

 $\Box a_{\mu}^{\exp} = 11659x xxx(16) \times 10^{-11}$

The hadronic LbL: setup and problems

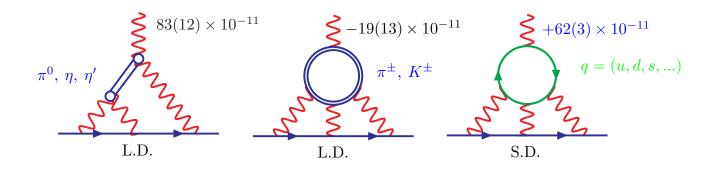
Hadrons in $\langle 0|T\{A^{\mu}(x_1)A^{\nu}(x_2)A^{\rho}(x_3)A^{\sigma}(x_4)\}|0\rangle$

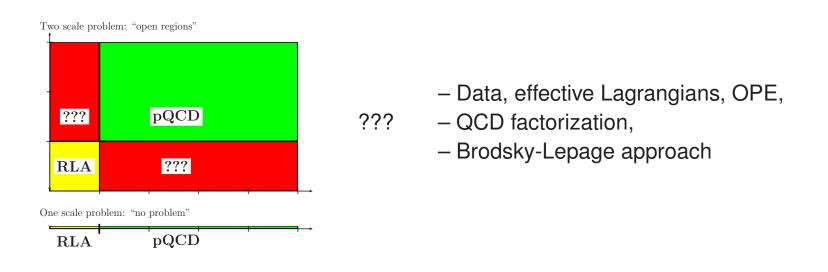

Key object full rank-four hadronic vacuum polarization tensor

$$\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_3) = \int d^4x_1 d^4x_2 d^4x_3 e^{i(q_1x_1+q_2x_2+q_3x_3)} \\ \times \langle 0 | T\{j_{\mu}(x_1)j_{\nu}(x_2)j_{\lambda}(x_3)j_{\rho}(0)\} | 0 \rangle$$

- non-perturbative physics
- general covariant decomposition involves 138 Lorentz structures of which
- ♦ 32 can contribute to g 2

- ✤ fortunately, dominated by the pseudoscalar exchanges π^0 , η , η' , ... described by the effective Wess-Zumino Lagrangian
- generally, pQCD useful to evaluate the short distance (S.D.) tail
- off-shell form factors needed not directly accessible to experiment!
- the dominant long distance (L.D.) part must be evaluated using some low energy effective model which includes the pseudoscalar Goldstone bosons as well as the vector mesons which play a dominant role (vector meson dominance mechanism); HLS, ENJL, general RLA, large N_c inspired ansätze, and others


Need appropriate low energy effective theory \Rightarrow amount to calculate the following type diagrams


Data show almost background free spikes of the PS mesons! Substantial background form quark loop is absent (seems to contradict large quark-loop contribution as obtained in SDA). Clear message from data: fully non-perturbative, evidence for PS dominance. However, no information about axial mesons (Landau-Yang theorem). Illustrates how data can tell us where we are.

Low energy expansion in terms of hadronic components: theoretical models vs experimental data

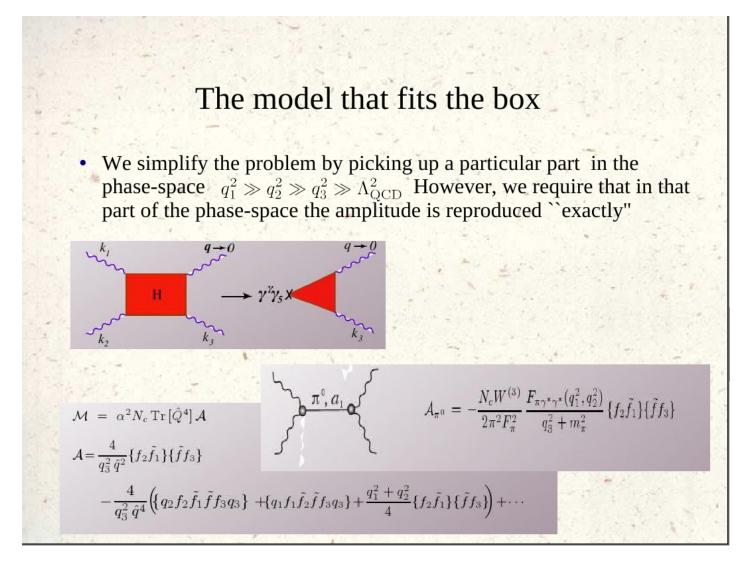
➡ KLOE, KEDR, BES, BaBar, Belle, ?

LD requires low energy effective hadronic models: simplest case $\pi^0 \gamma \gamma$ vertex Basic problem: (s, s_1, s_2) -domain of $\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}(s, s_1, s_2)$; here $(0, s_1, s_2)$ -plane

Models and Controversies

Low energy effective field theory Traditional approach: low energy effective Lagrangians: HLS, ENJL (resonance chiral theory) Kinoshita et al., Bijnens et al, matching and double counting problems

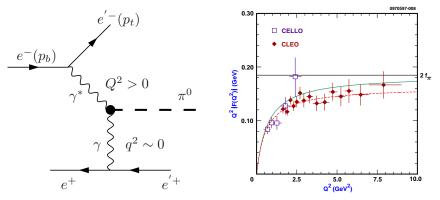
□ Large N_c QCD inspired approach Novel approach: refer to quark—hadron duality of large- N_c QCD, hadron spectrum known, infinite series of narrow spin 1 resonances 't Hooft 79 ⇒ no matching problem (resonance representation has to match quark level representation) De Rafael 94, Knecht, Nyffeler 02


other new approaches:

HLbL from string theory

Cappiello, Catá, D' Ambrosio

 QCD based numeric Schwinger-Dyson/Bethe-Salpeter equations approach Goecke, Fischer, Williams


The Melnikov-Vainshtein constraint and model

F. Jegerlehner

Constraints for on-shell pions (pion pole approximation)

- ★ The constant $e^2 \mathcal{F}_{\pi^0 \gamma \gamma}(m_{\pi}^2, 0, 0) = \frac{e^2 N_c}{12\pi^2 f_{\pi}} = \frac{\alpha}{\pi f_{\pi}} \approx 0.025 \text{ GeV}^{-1}$ well determined by $\pi^0 \rightarrow \gamma \gamma$ decay rate (from Wess-Zumino Lagrangian); experimental improvement needed!
- ♦ Information on $\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0)$ from $e^+e^- \rightarrow e^+e^-\pi^0$ experiments

CELLO and CLEO measurement of the π^0 form factor $\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0)$ at high space–like Q^2 . outdated now by BABAR?

Brodsky–Lepage interpolating formula gives an acceptable fit.

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0) \simeq \frac{1}{4\pi^2 f_{\pi}} \frac{1}{1 + (Q^2/8\pi^2 f_{\pi}^2)} \sim \frac{2f_{\pi}}{Q^2}$$

Inspired by pion pole dominance idea this FF has been used mostly (HKS,BPP,KN) in the past, but has been criticized recently (MV and FJ07).

■ Melnikov, Vainshtein: in chiral limit vertex with external photon must be non-dressed! i.e. use $\mathcal{F}_{\pi^0\gamma^*\gamma}(0,0,0)$, which avoids eventual kinematic inconsistency, thus no VMD damping ⇒result increases by 30% !

□ In *g* – 2 external photon at zero momentum ⇒ only $\mathcal{F}_{\pi^{0*}\gamma^*\gamma}(-Q^2, -Q^2, 0)$ not $\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0)$ is consistent with kinematics. Unfortunately, this off–shell form factor is not known and in fact not measurable and CELLO/CLEO constraint does not apply!. Obsolete far off-shell pion (in space-like region). Can we check such questions experimentally or in lattice QCD?

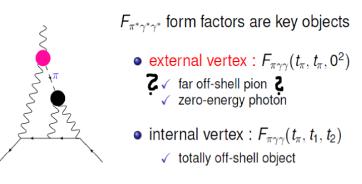
Present status:

Pseudoscalar exchanges

Model for $\mathcal{F}_{P^{(*)}\gamma^*\gamma^*}$	$a_\mu(\pi^0) imes 10^{11}$	$a_\mu(\pi^0,\eta,\eta') imes 10^{11}$
modified ENJL (off-shell) [BPP]	59(9)	85(13)
VMD / HLS (off-shell) [HKS,HK]	57(4)	83(6)
LMD+V (on-shell, $h_2=0$) [KN]	58(10)	83(12)
LMD+V (on-shell, $h_2=-10~{ m GeV}^2$) [KN]	63(10)	88(12)
LMD+V (on-shell, constant FF at ext. vertex) [MV]	77(7)	114(10)
nonlocal χ QM (off-shell) [DB]	65(2)	—
LMD+V (off-shell) [N]	72(12)	99(16)
AdS/QCD (off-shell ?) [HoK]	69	107
AdS/QCD/DIP (off-shell) [CCD]	65.4(2.5)	—
DSE (off-shell) [FGW]	58(7)	84(13)
[PdRV]	—	114(13)
[JN]	72(12)	99(16)

BPP = Bijnens, Pallante, Prades '95, '96, '02 (ENJL = Extended Nambu-Jona-Lasinio model); HK(S) = Hayakawa, Kinoshita, Sanda '95, '96; Hayakawa, Kinoshita '98, '02 (HLS = Hidden Local Symmetry model); KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; DB = Dorokhov, Broniowski '08 (χ QM = Chiral Quark Model); N = Nyffeler '09; HoK = Hong, Kim '09; CCD = Cappiello, Catà, D'Ambrosio '10 (used AdS/QCD to fix parameters in DIP (D'Ambrosio, Isidori, Portolés) ansatz); FGW = Fischer, Goecke, Williams '10, '11 (Dyson-Schwinger equation) Reviews on LbyL: PdRV = Prades, de Rafael, Vainshtein '09; JN = Jegerlehner, Nyffeler '09

A. Nyffeler, Seattle

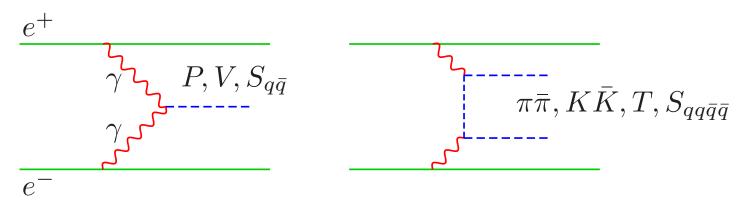

- p. 29

Data constrain Models

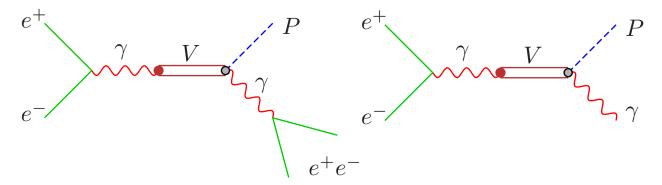
Details in Seattle talks:
Dario MorricianiKLCAchim DenigBallSimon EidelmanBellHenryk CzyżEKH

KLOE small angle tagger (low energy $\pi^0 \gamma \gamma$) BaBar and BES results and plans Belle and KEDR results and plans [work in progress] EKHARA a Monte Carlo for $\gamma^* \gamma^*$ physics

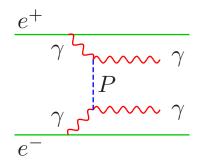
Pion exchange in hadronic LbL



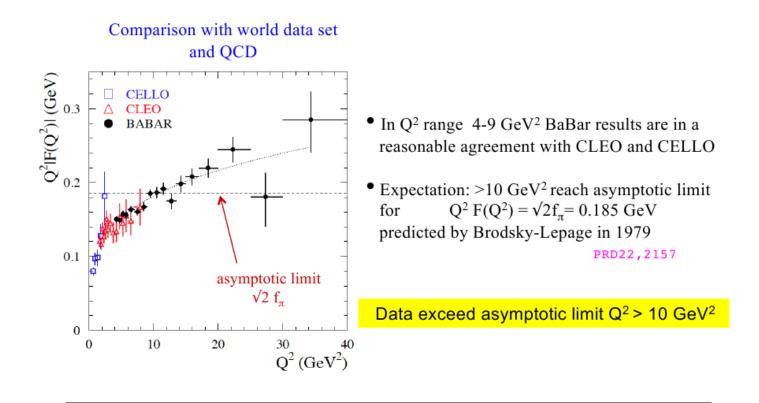
3


These form factors were never measured

H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...


Overview (Eidelman incl progress report for Belle, KEDR):

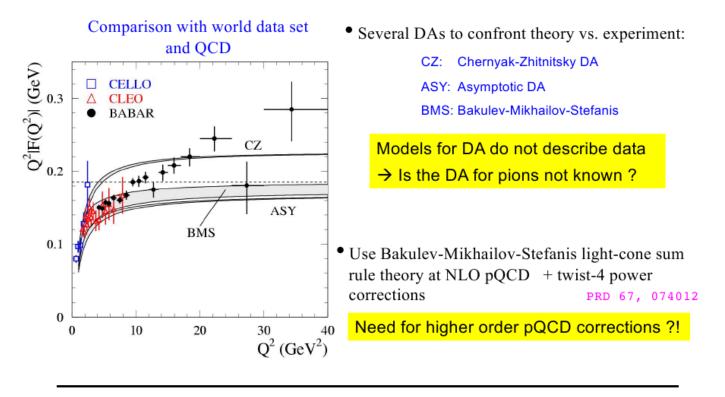
mostly single-tag events: KLOE, KEDR (taggers), BaBar, Belle, BES III (high luminosity)


Dalitz-decays: $\rho, \omega, \phi \to \pi^0(\eta) e^+ e^-$ Novosibirsk, NA60, JLab, Mainz, Bonn, Jülich, BES

would be interesting, but is buried in the background

BaBar

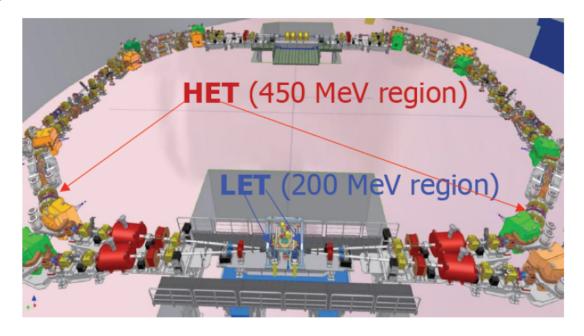
The π^0 Transition Form Factor



Achim Denig

Meson Transition FFs at BaBar

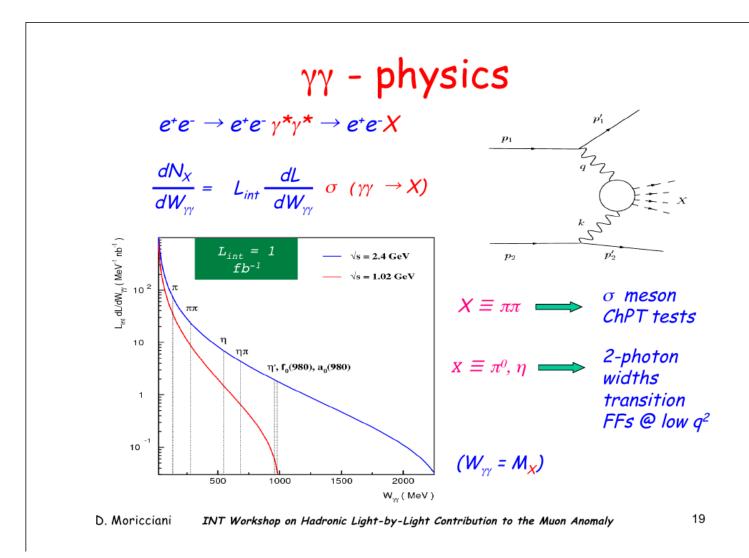
10


The π^0 Transition Form Factor

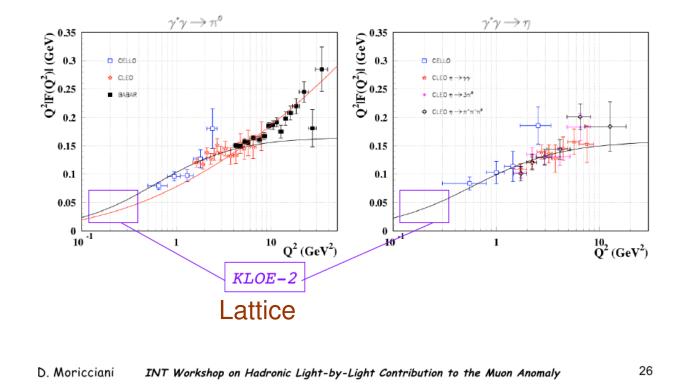
Achim Denig

Meson Transition FFs at BaBar

Start of new KLOE-2 experiment under way:KLOE-2 experiment $\gamma\gamma \rightarrow \pi^0, \eta, \cdots$



The $\phi(1020)$ meson factory DA Φ NE(Frascati)+ KLOE detector + small angle taggers

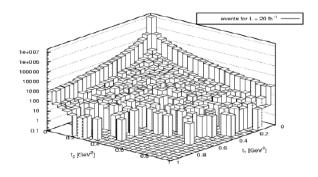

Sergiy IVASHYN (Katowice, Kharkov)

 $r^0\gamma\gamma$

21 / VI / 2010 @ Mainz 28 / 66

KLOE-2 contribution ??

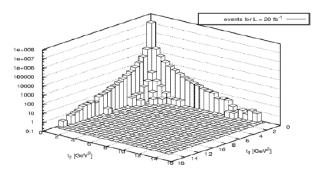
Lattice (Shoij Hashimoto)


MC Simulation with EKHARA Generator

H. Czyż, S. Ivashyn et al. [http://prac.us.edu.pl/~ekhara]

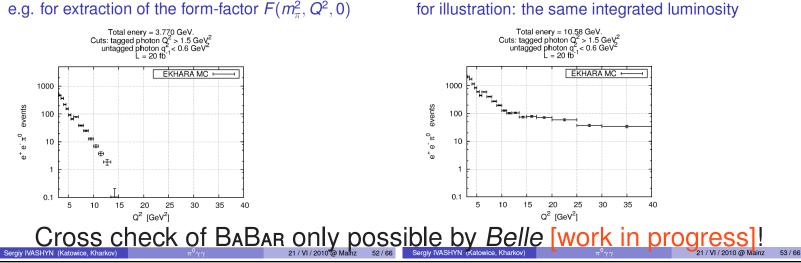
Tagging:

- □ single tagging LET: tagged invariant t_1 close to zero, promising range $0.05 \text{ GeV}^2 < t_2 < 0.4 \text{ GeV}^2$
- LET-LET and LET-HET double tagging is not possible
- \Box LET + central: promising range 0.18 GeV² < t_2 < 0.4 GeV²
- \Box single tagging HET: tagged invariant t_1 close to zero \Rightarrow t_2 also close to zero
- HET-HET double tagging is possible but both photons quasi-real ⇒ good for measurement of $\pi^0 \rightarrow \gamma \gamma$ width, pion practically at rest



• $\sqrt{s} = 3 \text{ GeV}$, $\int \mathscr{L} dt = 20 \text{ fb}^{-1}$ (~ 9 months at $\mathscr{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

Single-tag measurement at BES-III


e.g. for extraction of the form-factor $F(m_{\pi}^2, Q^2, 0)$

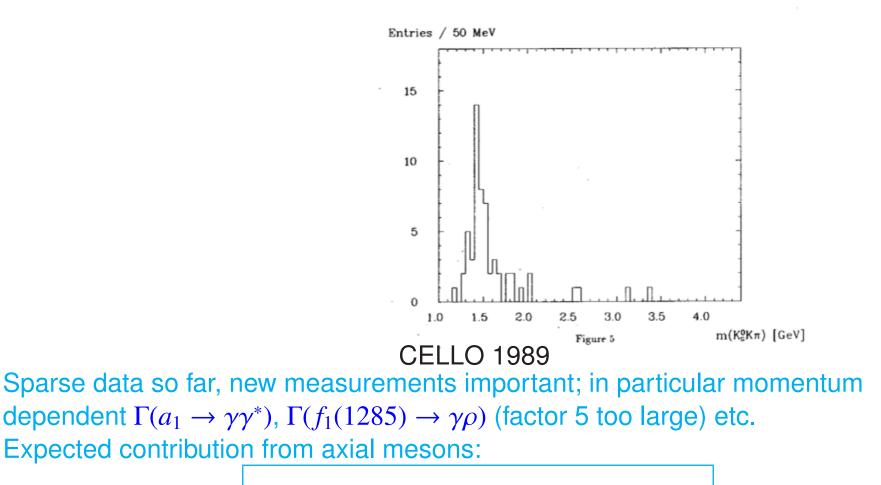
• $\sqrt{s} = 3.770 \text{ GeV}, \quad \int \mathscr{L} dt = 20 \text{ fb}^{-|1|}$ (~ 9 months at $\mathscr{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

cf. Single-tagging at BaBar energy

F. Jegerlehner

Radio MonteCarLow WG meeting, Frascati, 2011

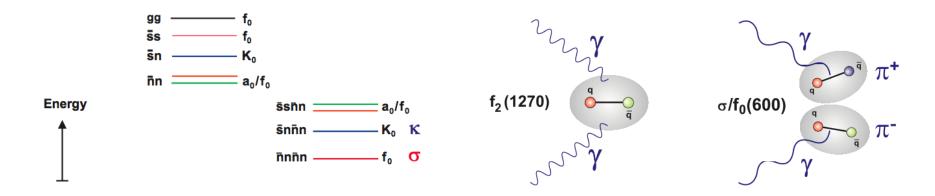
Axial exchanges: a_1, f'_1, f_1

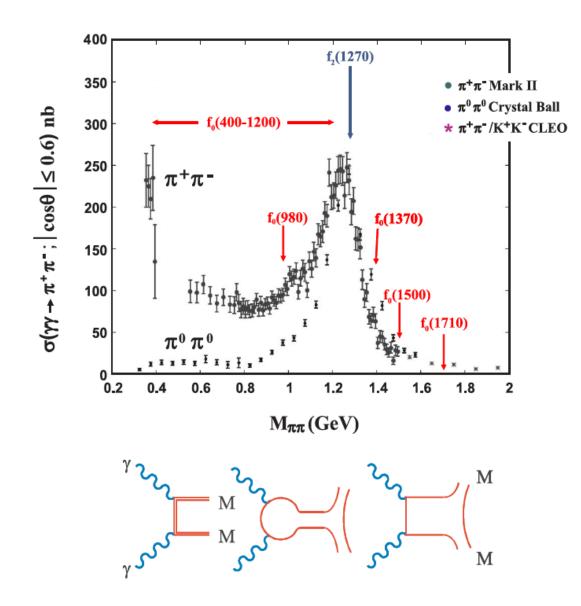

Axial exchanges Landau-Yang Theorem: \mathcal{A} (axial meson $\rightarrow \gamma\gamma$)=0

```
e.g. Z^0 \not\approx \gamma \gamma, while Z^0 \rightarrow \gamma e^+ e^- \checkmark
```

Why $a_{\mu}[a_1, f'_1, f_1] \sim 25 \times 10^{-11}$ so large?

untagged \(\gamma\) y \(\rightarrow A\) no signal!
single-tag \(\gamma^*\) y \(\rightarrow A\) strong peak is \(Q^2 >> m_f^2\)


 $\sigma(\gamma^*\gamma \to f_1 \to K^0_{\rm s}K\pi)$



$$a_{\mu}[a_1, f'_1, f_1] \sim (28.13 \pm 5.63) \times 10^{-11}$$

Scalar exchanges: a_0, f'_0, f_0, \cdots

Mesons: $M(q\bar{q})$, $M(qq\bar{q}\bar{q}\bar{q})$, glueballs mixing Experimental: Crystal Ball, Mark II, Belle! Theory: Mennessier, Pennington et al., Mousallam et al., Achasov et al., ...

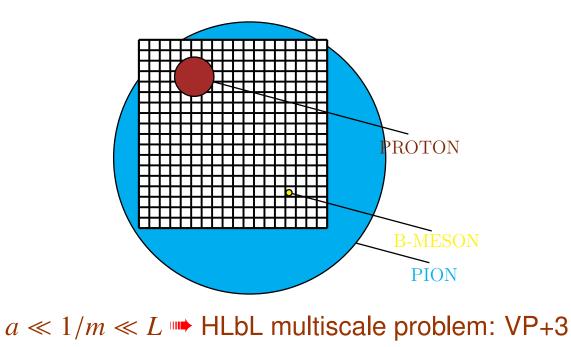
Strong tensor meson resonance in $\pi\pi$ channel $f_2(1270)$

So: expect usual pion-loop in HLbL plays role like pion-loop in VP. i.e. like missing the ρ .

Need to explicitly include tensor mesons

Scalars everywhere. Many scalars many small contributions may sum up to substantial effect!

Expected contribution from $q\bar{q}$ scalars:


$$a_{\mu}[a_0, f'_0, f_0] \sim (-5.98 \pm 1.20) \times 10^{-11}$$

So far nobody has evaluated $qq\bar{q}\bar{q}$ in SU(3) sector [u, d, s] many possible states, which individually are expected rather small

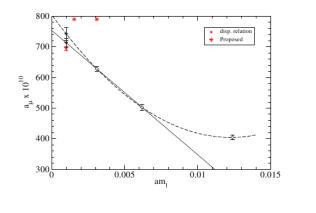
A role for lattice QCD

• Hadronic contributions to g - 2 = integrals over physical cross sections or hadronic amplitudes

• in fact all can be represented as integrals over space-like "form-factors" • directly accessible to lattice QCD : $\langle j_{em}^{\mu}(x_1) j_{em}^{\nu}(x_2) j_{em}^{\rho}(x_3) j_{em}^{\sigma}(x_4) \rangle$ or integral of it.

Hadronic LbL difficult, challenging long term project:

HLbL Blum et al.


Summary/Outlook: light-by-light contributions ($O(\alpha^3)$)

- Pure QED calculation on the lattice roughly reproduces the perturbative result. Encouraging.
- Full hadronic contribution is O(10²) times smaller, still swamped by the statistical noise
- Small volumes, poor statistics. Try
 - Volume (low-mode) averaging for the loop
 - Larger volumes
 - More statistics, i.e. more QED configurations per QCD configuration
 - conventional calculation using "all-to-all" propagator
- multi-quark loops not yet attempted

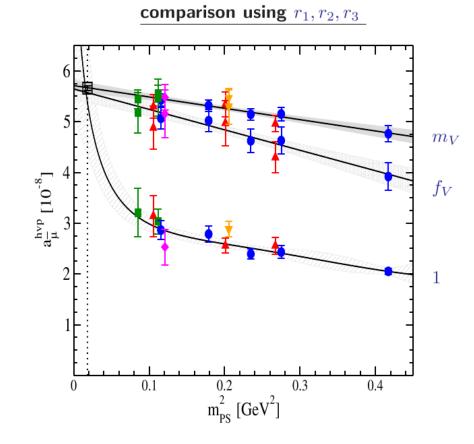
The test case hadronic VP:

VP – Aubin & Blum:

The order α^2 hadronic contribution to g-2

Extrapolate $m_l \rightarrow m_{u,d}$

Simple linear and quadratic chiral extrapolations consistent with $e^+e^- \rightarrow {\rm hadrons}~{\rm result}$


$$\begin{split} a_{\mu}^{HLO} &= (713 \pm 15) \times 10^{-10} \text{ (linear)} \\ a_{\mu}^{HLO} &= (742 \pm 21) \times 10^{-10} \text{ (quad)} \\ \text{(statistical errors only).} \end{split}$$

[Aubin, Blum, Phys. Rev. D, 2006]

Fit	quenched	$am_l = 0.0124$	$am_l = 0.0062$	$am_l = 0.0031$
Poly 3	381 (63)	370(49)	445(43)	542(24)
Poly 4	588 (142)	410(91)	639(123)	729(59)
А	366.6 (7.0)	412.3 (7.8)	516.0 (9.5)	646.9 (8.1)
В		403.9 (7.8)	502.1 (9.5)	628.0 (8.1)
С		403.9 (7.8)	502.1 (9.5)	628.0 (8.1)

23

The problem of extrapolation: VP Jansen et al

 a_{μ} direct, as a function of M_{ρ} and of f_{ρ}

Some preliminary numbers

- experimental value: $a_{\mu,N_f=2}^{\mathrm{hvp,exp}} = 5.66(05)10^{-8}$
- from our old analysis: $a_{\mu,N_f=2}^{\rm hvp,old}=2.95(45)10^{-8}$
- \rightarrow misses the experimental value
- $\rightarrow~$ order of magnitude larger error
- from our new analysis: $a_{\mu,N_f=2}^{\text{hvp,new}} = 5.66(11)10^{-8}$
- $\rightarrow~$ error (including systematics) almost matching experiment

looks like very promising progress!

Present & Future

D Role of Melnikov-Vainshtein constraint still under debate (is virtual photon dressed or undressed at external $\pi^0 \gamma \gamma$ vertex?)

Role of quark loop: is it an independent contribution? solving Schwinger-Dyson equation approach yields very large value.

□ Large Q^2 behavior of $\mathcal{F}_{\pi^{0*}\gamma\gamma^*}(m_{\pi}^2, -Q^2, 0)$ from BaBar shows much weaker fall-off than expected by theory

□ New muon g - 2 experiment is on its way !!!

Need to improve accuracy for the hadronic light-by-light contribution.

• New input form $\gamma\gamma$ physics to constrain theoretical models for HLbL (KLOE-2,BES,MAINZ)

• Challenge for theory: radiative corrections needed

• Question of asymptotic behavior seen by BaBar, will likely be settled by Belle

Can we check controversial dressed/undressed (i.e damping or not?) at external vertex? Can Primakoff-effect plus DR help?

Lattice QCD makes big progress: we may expect relevant results for constraining models

□ Not to forget: urgent improvement of VP mandatory [lattice QCD may become competitive] (Novosibirsk: CMD3, SND, unanalised data from BaBar & Belle?)

Viva g = 2! Let's go to work!