# Updates on g-2 and $lpha_{ m em}$

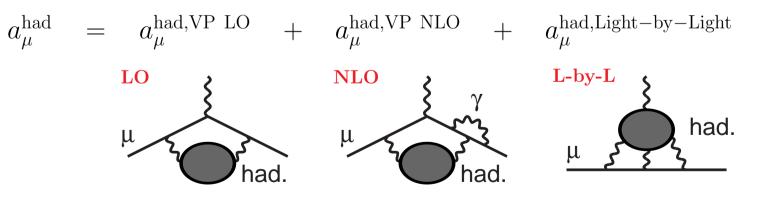


Thomas Teubner



I.  $(g-2)_{\mu}$ : Introduction

### II. Recent developments in $(g-2)_{\mu}$ ; Hadronic Vacuum Polarisation contributions


- $2\pi$ : KLOE 2008 and 2010, BaBar 2009 analyses
- Inclusive vs. sum of exclusive data below 2 GeV
- New HLMNT compilation; comparison with other groups; SM vs. BNL

III.  $\Delta \alpha(q^2)$ : Running QED coupling in the space- and time-like region.  $\alpha(M_Z^2)$ IV. Outlook

Thanks to my collaborators Kaoru Hagiwara, Ruofan Liao, Alan Martin and Daisuke Nomura

# I. $(g-2)_{\mu}$ : Introduction

- $a_{\mu} = (g-2)_{\mu}/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{New Physics?}}$
- QED: Predictions consolidated, further work (numerical five-loop) ongoing, big surprises very unprobable, error formidably small: a<sup>QED</sup><sub>μ</sub> = 116584718.08(15) · 10<sup>-11</sup> ✓ Kinoshita et al.
- EW: reliable two-loop predictions, accuracy fully sufficient:  $a_{\mu}^{\text{EW}} = (154 \pm 2) \cdot 10^{-11} \checkmark$ Czarnecki et al., Knecht et al.
- Hadronic contributions: uncertainties completely dominate  $\Delta a_{\mu}^{SM}$ !



► Hadronic contributions from low  $\gamma$  virtualities not calculable with perturbative QCD - Lattice simulations difficult; promising first steps, but accuracy not (yet?) sufficient

- ► Light-by-Light:
- No dispersion relation for L-by-L. First Principles calculations from lattice QCD are underway by two groups: QCDSF and T Blum et al. Both approaches promising but at an early stage and no results yet.

Also first results based on Dyson-Schwinger eqs. by C Fischer et al.

- 'Convergence' of different recent model calculations. HMNLT numbers below use compilation from J Prades, E de Rafael, A Vainshtein:  $a_{\mu}^{L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$
- Compatible recent result from F Jegerlehner, A Nyffeler:  $a_{\mu}^{L-by-L} = (11.6 \pm 4.0) \cdot 10^{-10}$
- $\rightarrow$  For more details and latest news see talks by Fred Jegerlehner and Simon Eidelman.
- ► Vacuum Polarisation contributions from exp. σ(e<sup>+</sup>e<sup>-</sup> → γ<sup>\*</sup> → hadrons) data or from τ → ν<sub>τ</sub> + hadrons spectral functions; isospin breaking?! → talks by Robert Szafron and FJ via dispersion integral (based on analyticity and unitarity):

$$a_{\mu}^{\text{had,VP LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$

 $\rightarrow$  Kernel  $K \rightsquigarrow$  weighting towards smallest energies.  $\sigma_{had}^0$  the undressed cross section

ightarrow Similar approach with different kernel functions for NLO VP contributions  $a_{\mu}^{
m had,VP~NLO}$ 

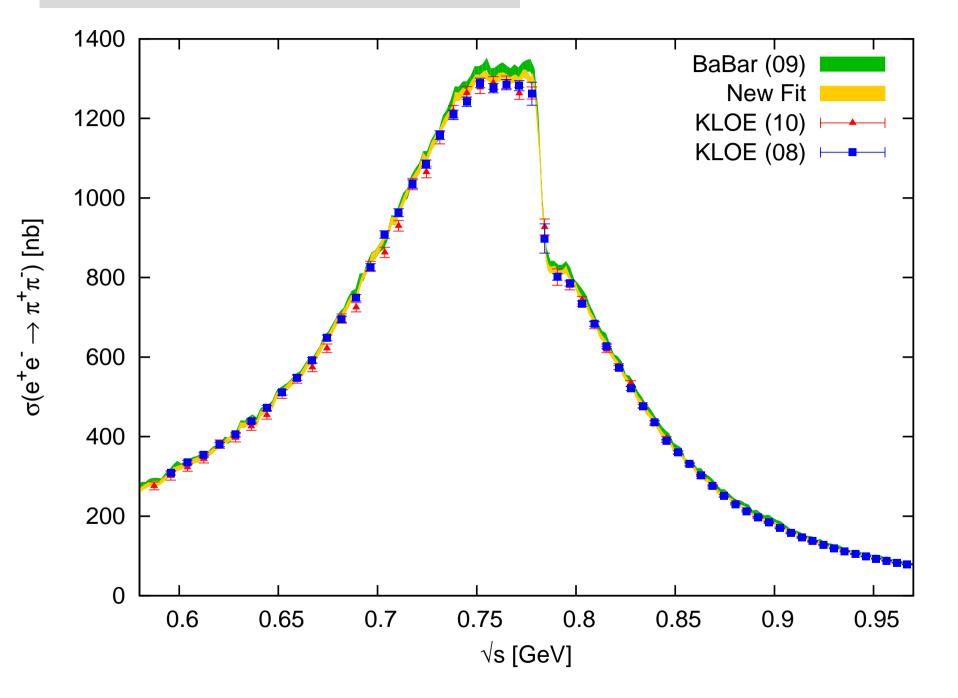
# II. Recent developments in $(g-2)_{\mu}$ ; Hadronic VP contributions

# • Compilation of $\sigma_{ m had}^0(s)$

- For low energies, need to sum  $\sim 25$  exclusive channels.  $[2\pi, 3\pi, KK, 4\pi, \ldots]$
- 1.43 2 GeV: sum exclusive channels and/or use old inclusive data
- above  $\sim 2$  GeV: inclusive data *or* use of perturbative QCD.
- In each channel: Data combination from many experiments, non-trivial w.r.t. error analysis/correlations/different energy ranges.

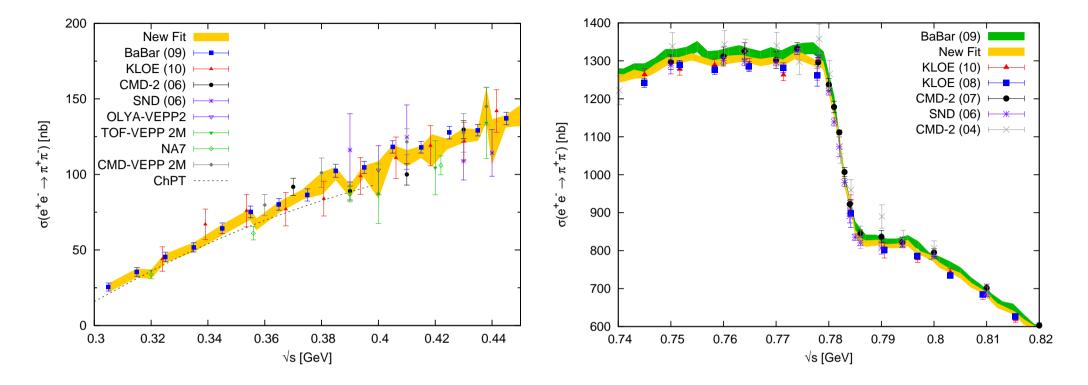
[Different methods/machinery used by different groups.]

- Note:  $\sigma^{0}(s)$  must be the *undressed* hadronic cross section (i.e. photon VP subtracted  $[\sigma^{0}(s) = \sigma(s) \cdot (\alpha/\alpha(s))^{2}]$ , otherwise double-counting with  $a_{\mu}^{\text{had,VP NLO}}$ )
- but must include final state photon radiation.
- → Uncertainty in treatment of radiative corrections, especially for older data sets! Assign additional error. HLMNT:  $\delta a_{\mu}^{\text{had,VP+FSR}} \simeq 2 \times 10^{-10} \ [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$


#### Most important channels with changes in input data since ${\sim}2006$

The main exps. for 'low' energy hadronic cross sections in  $e^+e^-$ ; channels

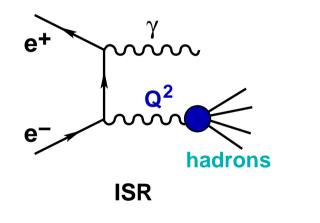
- CMD-2, [VEPP-2M], Novosibirsk ( $K^+K^-$ ,  $2\pi^+2\pi^-\pi^0$ ,  $2\pi^+2\pi^-2\pi^0$ )
- SND, [VEPP-2M], Novosibirsk  $(K^+K^-, K_S^0K_L^0)$
- KLOE, [DA $\Phi$ NE], Frascati ( $\pi^+\pi^-(\gamma)$ ,  $\omega\pi^0$ )
- BaBar, [PEP-II], SLAC, Stanford ( $\pi^+\pi^-(\gamma)$ ,  $K^+K^-\pi^0$ ,  $K_S^0\pi K$ ,  $2\pi^+2\pi^-\pi^0$ ,  $K^+K^-\pi^+\pi^-\pi^0$ ,  $2\pi^+2\pi^-\eta$ ,  $2\pi^+2\pi^-2\pi^0$ ,  $KK\pi\pi$ ,  $K^+K^-K^+K^-$ )
- BELLE, [KEKB], KEK, Tsukuba
- BES, [BEPC], Beijing (inclusive  $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$  data)
- CLEO, [CESR], Cornell (inclusive R)
- In principle inclusion of new data in updated analyses straightforward...


Concentrate on two cases where not: most important  $2\pi$  and the 1.43 - 2 GeV region.

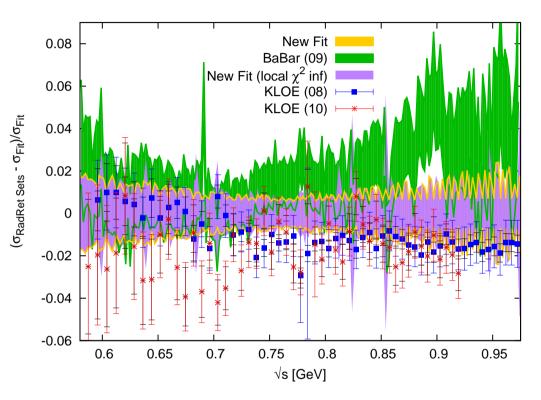
The most important  $2\pi$  channel (> 70%) 879 data points, overall picture fine



•

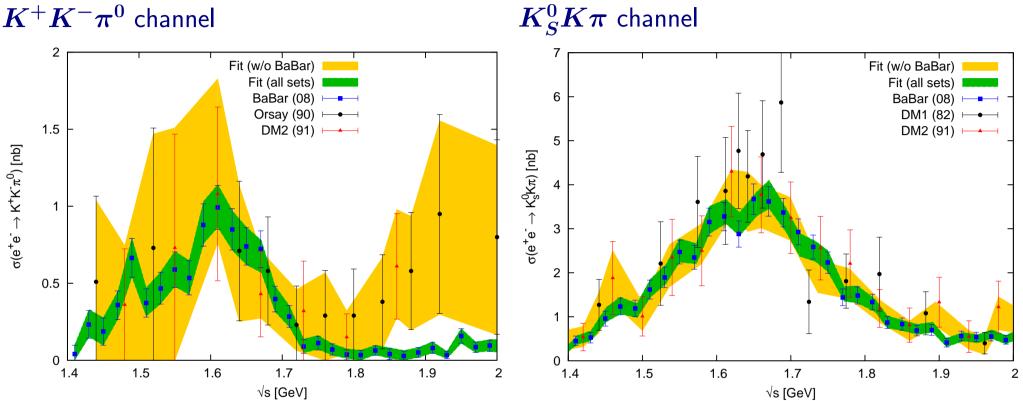

#### Zoom in low energy ( $2\pi$ threshold) and $\rho$ -peak / $\rho$ - $\omega$ interference region




- 'Direct Scan': Very good agreement between data from CMD-2 and SND, fully consistent with earlier data.
- Low energy points crucial for recent improvements of  $a_{\mu}^{\pi\pi}$ .
- 'Radiative Return': KLOE and BaBar show slight tension with the Direct Scan data, and with each other;
- $\rightarrow$  Differences in shape and BaBar high at medium and higher energies:

### KLOE 08/10 and BaBar 09 $\pi\pi(\gamma)$ Radiative Return data compared to combination of all

Radiative Return (at fixed  $e^+e^-$  energy) has recently developed (TH + EXP) into a powerful method with great potential, *complementary to direct energy scan* 

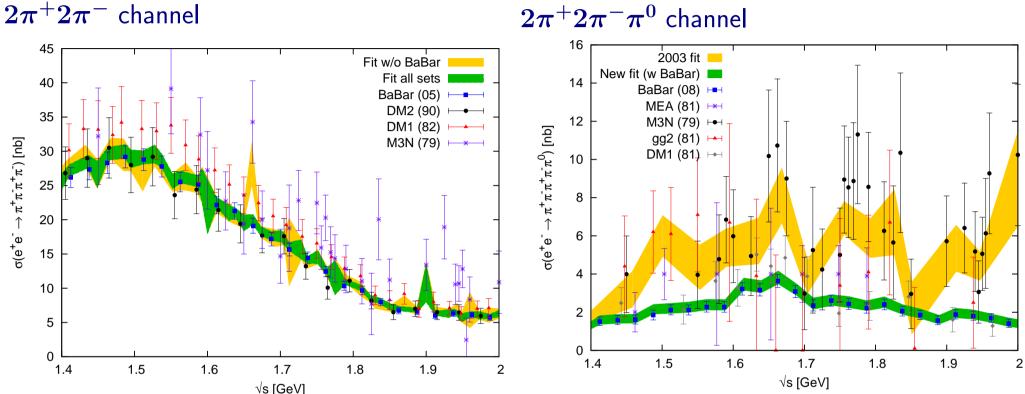



Normalised diff. of cross sections [HLMNT]



- Method used first by 'meson factories', where high statistics compensates  $\alpha/\pi$  suppression of  $\gamma$  radiation.
- Results for  $2\pi$  channel slightly different in shape, but completely different method, Monte Carlos etc.
- Comb. of all data on same footing, before integration (purple band): still good χ<sup>2</sup><sub>min</sub>/d.o.f. ~ 1.5 of fit]
   → limited gain in accuracy due to 'tension'; pull-up (mainly from BaBar):
   HLMNT 10: a<sup>2π</sup><sub>μ</sub>(0.32 2 GeV) = (504.23 ± 2.97) · 10<sup>-10</sup> [pull a<sub>μ</sub> up by ~ 5.5 units]

#### Region below 2 GeV: influence of recent BaBar Radiative Return analyses



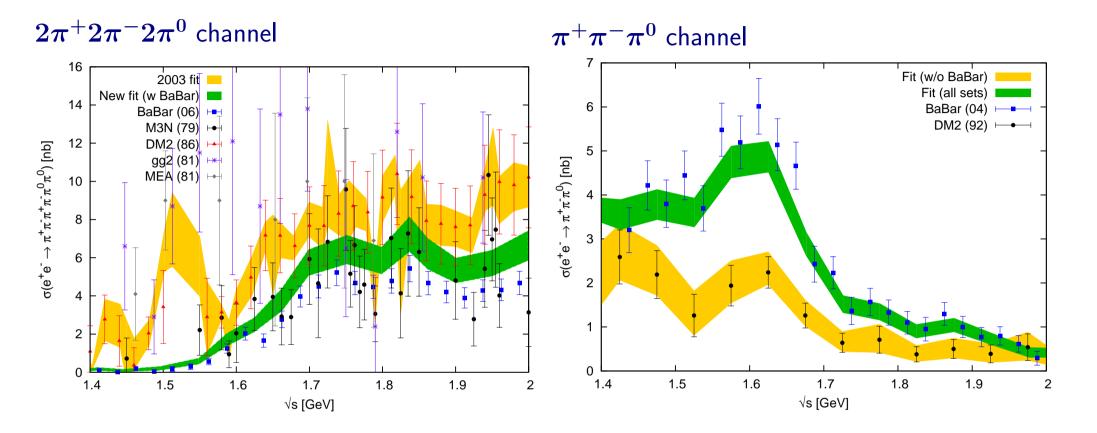

### $K^+K^-\pi^0$ channel

Big improvements over earlier data compilations in many channels.  $\rightarrow$ 

BaBar Radiative Return data lower than less precise older data in most channels.

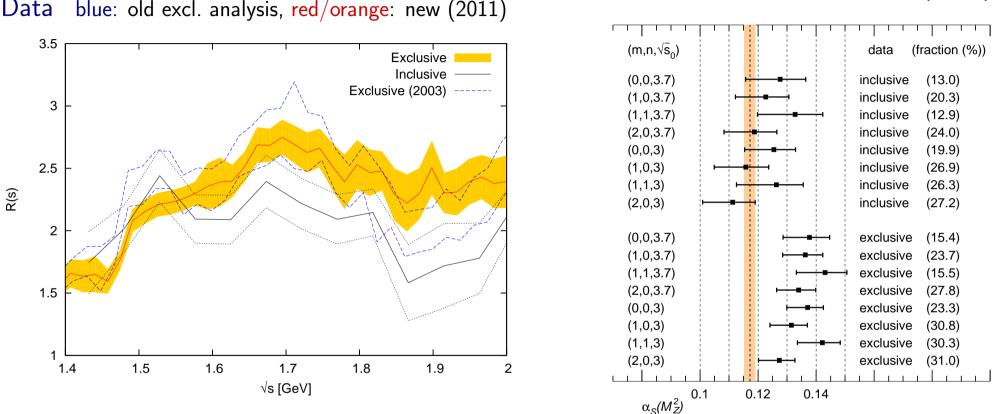
#### Region below 2 GeV: influence of recent BaBar Radiative Return analyses




 $2\pi^+2\pi^-\pi^0$  channel

(contd)

Error 'inflation' needed when data inconsistent,  $\rightarrow$ 


e.g. BaBar lower than previous measurements in  $2\pi^+2\pi^-\pi^0$  channel  $\rightarrow$  HLMNT: Errors for g-2 inflated by local  $\sqrt{\chi^2_{\min}/d.o.f.}$  [global  $\chi^2_{\min}/d.o.f. = 1.4$ ]

(contd 2)



– Examples with bad global  $\chi^2_{\rm min}/{\rm d.o.f.}$  (4 and 2.3), though limited impact when local error inflation applied

 $\rightarrow$  scope for future improvements



Sum-rules 'determining'  $\alpha_S$  (2003):

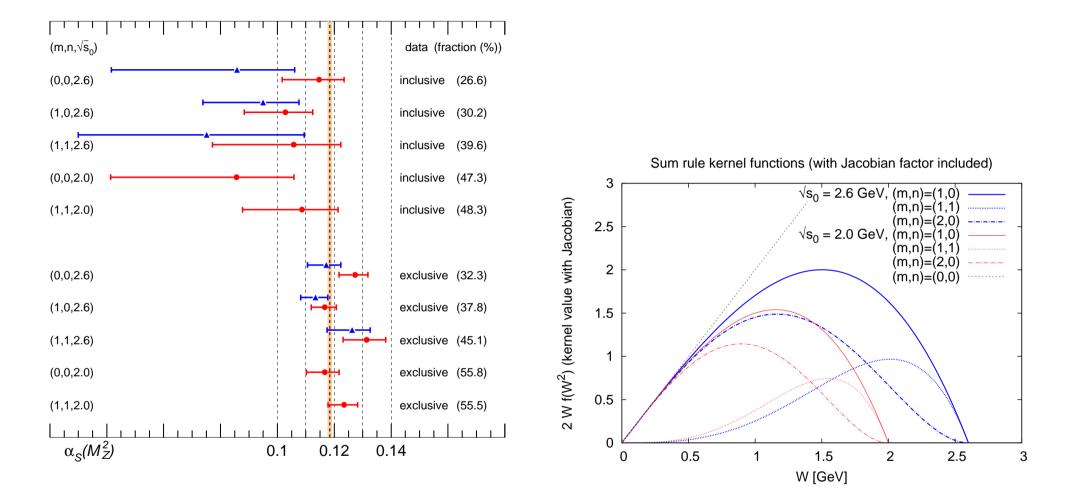
Data blue: old excl. analysis, red/orange: new (2011)

• Shape similar, but normalisation different

- Question of completeness/quality of sum of exclusive data vs. reliability/systematics of old inclusive data ( $\gamma\gamma2$ , MEA, M3N, BBbar)
- HMNT previously (2003/06) have used incl. data, in line with sum-rule analysis

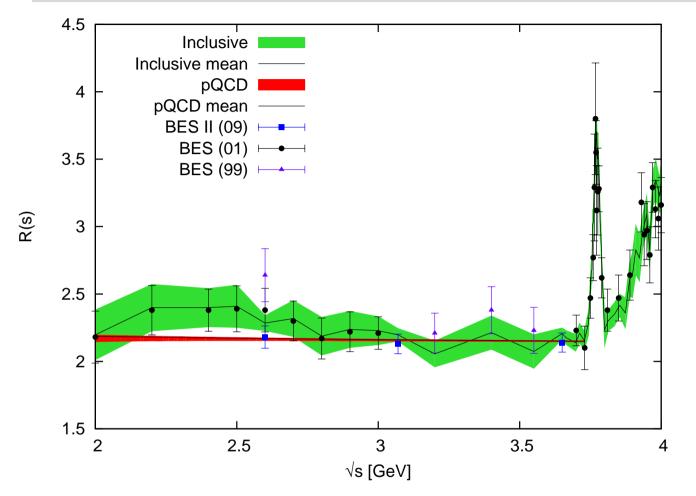
### Check against perturbative QCD: QCD $\sum$ -rule analysis




$$\int_{C}^{s_0} \mathrm{d}s \, \mathbf{R}(s) f(s) = \int_{C} \mathrm{d}s \, D(s)g(s) \,, \qquad \text{with} \quad D(s) \equiv -12\pi^2 s \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{\Pi(s)}{s}\right)$$

 $\Re s$ 

- The Adler D function is calculable in pQCD:  $D(s) = D_0(s) + D_m(s) + D_{np}(s)$ .
- Take  $f(s) = (1 s/s_0)^m (s/s_0)^n$  to maximise sensitivity to the required region, g(s) follows.
- Choose  $s_0$  below the open charm threshold ( $n_f = 3$  for pQCD).
- For m = 1, n = 0 one gets e.g.


$$\int_{s_{\rm th}}^{s_0} \mathrm{d}s \, R(s) \left( 1 - \frac{s}{s_0} \right) = \frac{i}{2\pi} \int_C \, \mathrm{d}s \, \left( -\frac{s}{2s_0} + 1 - \frac{s_0}{2s} \right) D(s) \, .$$

### HLMNT's new sum-rule analysis:

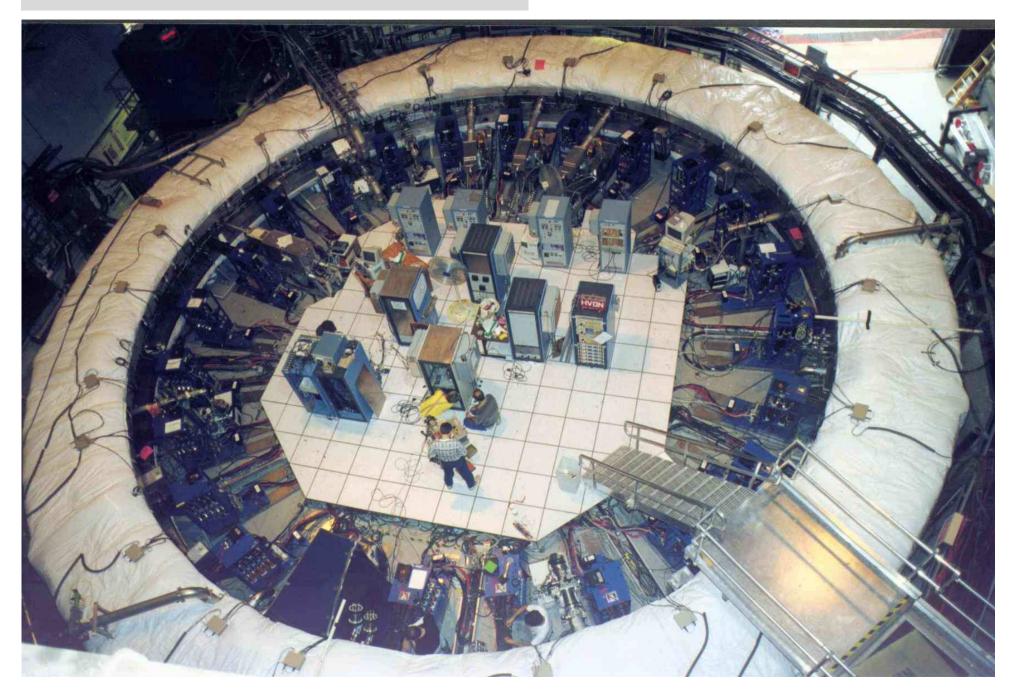


- New data have changed the picture  $\rightarrow$  sum over exclusive agrees better with QCD
- Still rely on isospin relations for missing channels [sizeable error from  $K\bar{K}\pi\pi$ ]
- From HLMNT 10: Use of more precise sum over exclusive ( $\hookrightarrow$  shift up by  $\sim +3 \cdot 10^{-10}$ )

#### Perturbative QCD vs. inclusive data above 2 GeV (below charm threshold)



- Latest BES data agree very well with pQCD [Davier et al. use pQCD from 1.8 GeV]
- $R_{uds}$  from pQCD mostly below data fit in region above 2 GeV
- HLMNT use pQCD only for  $2.6 < \sqrt{s} < 3.7$  GeV and with (larger) BES errors [would have small shift downwards ( $\sim -1.4 \cdot 10^{-10}$  for  $a_{\mu}$ ) if used from 2 GeV]


# The different SM contributions numerically

| Source       | contr. to $a_{\mu} 	imes 10^{11}$ | remarks                                                    |  |
|--------------|-----------------------------------|------------------------------------------------------------|--|
| QED          | 116 584 718.08 $\pm$ 0.15         | up to 5-loop (Kinoshita+Nio, Passera)                      |  |
|              | (was 116 584 719.35 $\pm$ 1.43)   | $\blacktriangleright$ incl. recent updates of $\alpha$     |  |
| EW           | $154 \pm 2$                       | 2-loop, Czarnecki+Marciano+Vainshtein                      |  |
|              |                                   | (agrees very well with Knecht+Peris+Perrottet+deRafael)    |  |
| LO hadr.     | $6923\pm42$                       | Davier <i>et al.</i> '10 $(e^+e^-)$                        |  |
|              | $6908 \pm 47$                     | F Jegerlehner $+$ R Szafron '11 $(e^+e^-)$                 |  |
|              | $6894 \pm 42 \pm 18$              | Hagiwara+Martin+Nomura+T '06                               |  |
| new:         | $6954 \pm 37 \pm 21$              | HLMNT 11 (prel.), this analysis, comb. error 43            |  |
| NLO hadr.    | $-98.5 \pm 0.6 \pm 0.4$           | HLMNT, in agreem. with Krause '97, Alemany+D+H '98         |  |
| L-by-L       | $105 \pm 26$                      | Prades+deRafael+Vainshtein                                 |  |
| agrees with  | $< 159~(95\%{ m CL})$             | upper bound from Erler+Toledo Sánchez from PHD             |  |
| < Nov. 2001: | $(-85 \pm 25)$                    | the 'famous' sign error, $2.6\sigma \rightarrow 1.6\sigma$ |  |
| $\sum$       | $116591830\pm49$                  | HLMNT 11 (prel.)                                           |  |

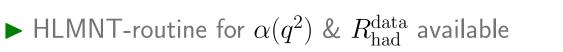
The theory prediction of g-2 is now slightly more precise than the BNL measurement

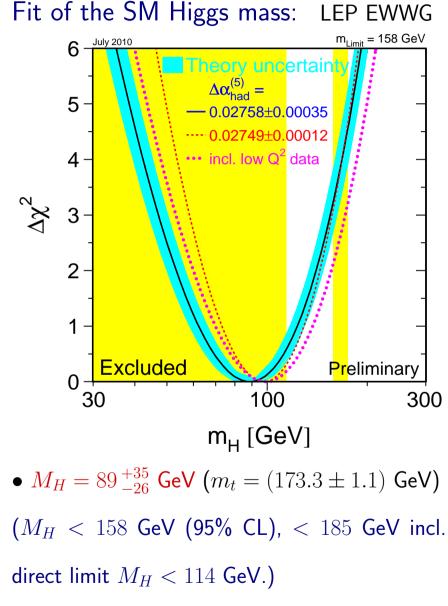
# SM vs BNL: A sign for New Physics?

Covered storage ring (Pic. from the g-2 Collab.)



 $a_{\mu}^{\rm SM}$  compared to BNL world av. HMNT (06) JN (09) Davier et al,  $\tau$  (10) Davier et al,  $e^+e^-$  (10) JS (11) HLMNT (10) **HLMNT (11)** --- experiment -----BNL BNL (new from shift in  $\lambda$ ) L....İ....l....l....İ....İ 170 18 180 190 200 210  $a_{\rm II} \times 10^{10} - 11659000$ Davier et al.:  $1.9/3.9/3.2 \sigma$ , '10:  $3.6 \sigma$ JN 09:  $3.2\sigma$  [179.0 ± 6.5], JS '11:  $3.3\sigma$ HLMNT 09: was  $4.0 \sigma$  [w/out BaBar 09  $2\pi$ ]


### Recent changes


- TH: Updated/improved LO hadronic (from  $e^+e^-$ ) [Many new data from CMD-2, SND, KLOE, BaBar, CLEO, BES. Excl. data below 2 GeV (BaBar RadRet)]  $(6894 \pm 46) \cdot 10^{-11} \longrightarrow (6954 \pm 43) \cdot 10^{-11}$
- TH: Use of recent L-by-L compilation [PdeRV]  $a_{\mu}^{\text{L-by-L}} = (10.5 \pm 2.6) \cdot 10^{-10}$
- EXP: Small shift of BNL's value due to CODATA's shift of muon to proton magn. moment ratio: Was  $a_{\mu} = 116\ 592\ 080(63) \times 10^{-11}$ 
  - $\rightarrow a_{\mu} = 116\ 592\ 089(63) \times 10^{-11}\ (0.5ppm)$
  - ► With this input HLMNT (prel. '11 ~ '10) get  $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (25.7 \pm 8.0) \cdot 10^{-10}$ , ~ **3.2** $\sigma$

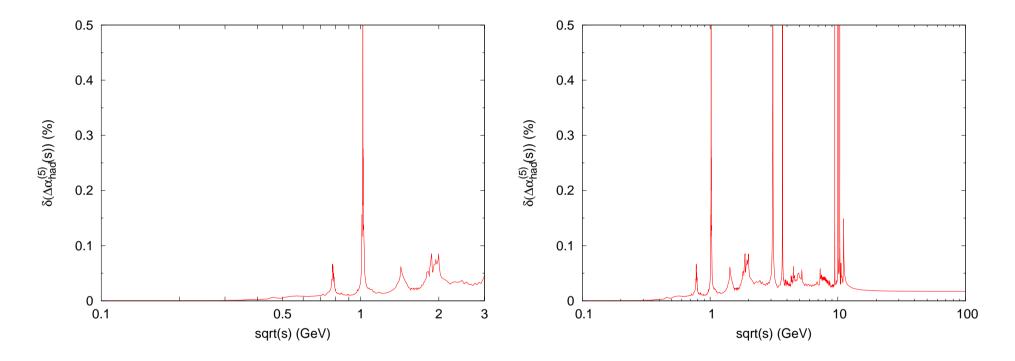
# III. The running QED coupling $\alpha(q^2)$ ... and the Higgs mass

$$\gamma^*_q$$

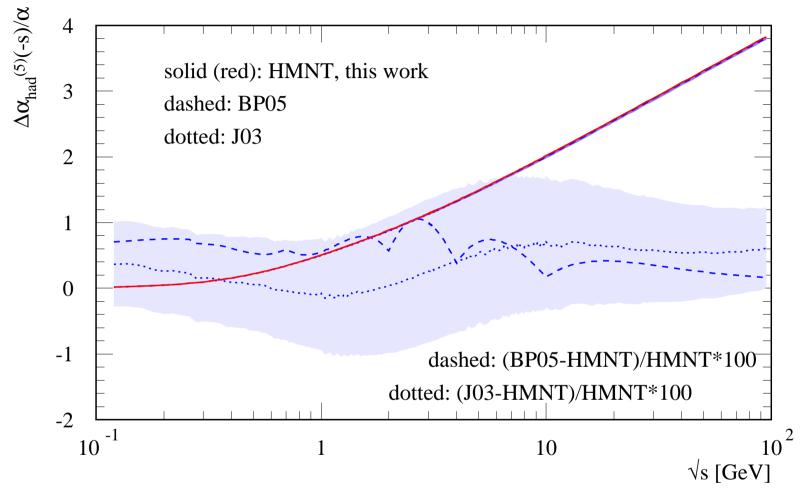
- Vacuum polarisation leads to the 'running' of  $\alpha$  from  $\alpha(q^2=0)~=~1/137.035999084(51)$  to  $\alpha(q^2=M_Z^2)\sim 1/129$
- $\alpha(q^2) = \alpha / \left(1 \Delta \alpha_{\text{lep}}(q^2) \Delta \alpha_{\text{had}}(q^2)\right)$
- Again use of a dispersion relation:  $\Delta \alpha_{\text{had}}^{(5)}(q^2) = -\frac{\alpha q^2}{3\pi} P \int_{s_{\text{th}}}^{\infty} \frac{R_{\text{had}}(s) ds}{s(s-q^2)}$
- Hadronic uncertainties  $\rightsquigarrow \quad \alpha$  the least well known EW param. of  $\{G_{\mu}, M_Z, \alpha(M_Z^2)\}$  !
- We find:  $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02759 \pm 0.00015$ [HLMNT 11 prel.:  $0.02764 \pm 0.00010$ ] i.e.  $\alpha (M_Z^2)^{-1} = 128.953 \pm 0.020$  (HLMNT 10)





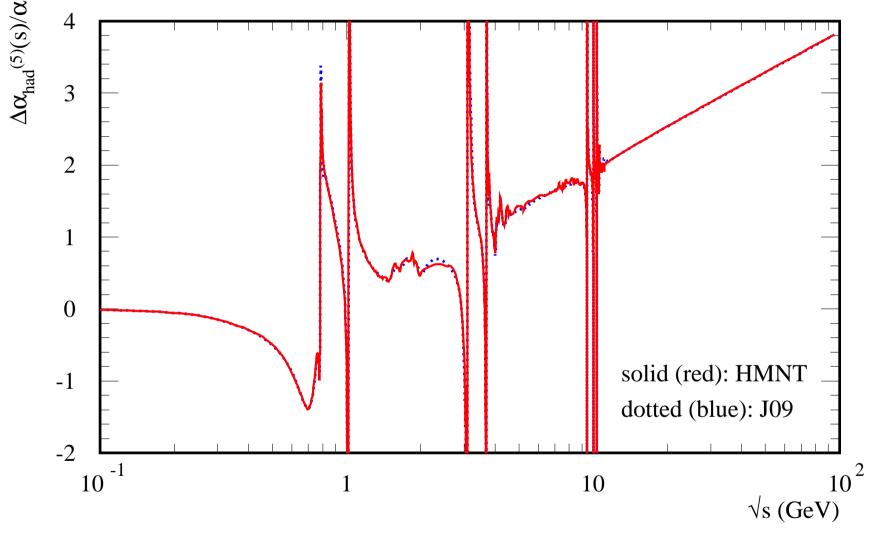

•  $M_H$  moves further down with new  $\Delta \alpha$ .

#### Features of the HLMNT VP code


- Latest version is VP\_HLMNT\_v2\_0, version 2.0, 15 July 2010
- Simple set of (standard) Fortran routines; completely standalone, no libs needed; all explanations in comment-headers
- Gives separately real and imaginary part ( $\Delta lpha(s)$  and R(s))
- Tabulation/interpolation of hadronic part, for both space- and time-like region, including errors; no input data files or rhad installation needed
- Leptonic part coded analytically; all special function included (partly with custom made expansions)
- top contribution in the same way
- → Flag to include or exclude very narrow resonances  $J/\psi$ ,  $\psi'$ ,  $\Upsilon(1 6 S)$ [ $\phi$  always included via integral over final state data  $(3\pi, KK)$ ]



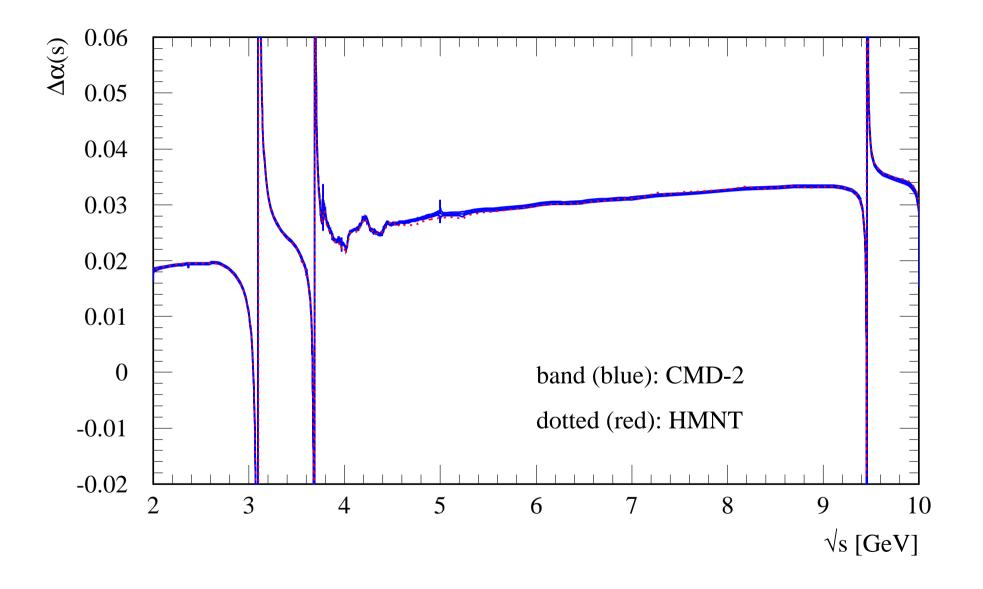
Error of VP in the timelike regime at low and higher energies (HLMNT compilation):



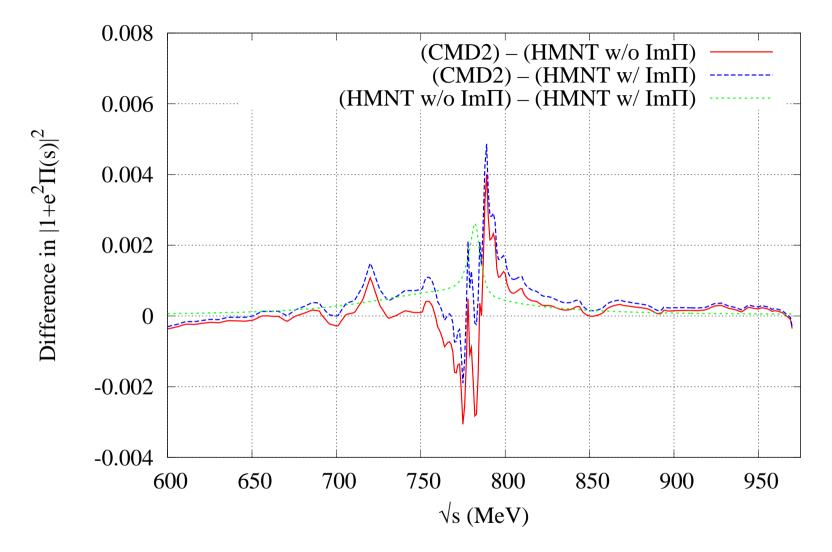

 → Below one per-mille (and typically ~ 5 · 10<sup>-4</sup>), apart from Narrow Resonances where the bubble summation is not well justified.
 Enough in the long term? Need for more work in resonance regions. • Comparison of Spacelike  $\Delta \alpha_{had}^{(5)}(-s)/\alpha$  (smooth  $\alpha(q^2 < 0)$ )



- Differences between parametrisations clearly visible but within error band (of HLMNT)
- Few-parameter formula from Burkhardt+Pietrzyk slightly 'bumpy' but still o.k.
- Encourage use of more accurate recent tabulations;  $\Delta lpha (M_Z^2)$


•  $\Delta \alpha(q^2)$  in the time-like: HLMNT compared to Fred Jegerlehner's new routines




 $\rightarrow$  with new version big differences (with 2003 version) gone

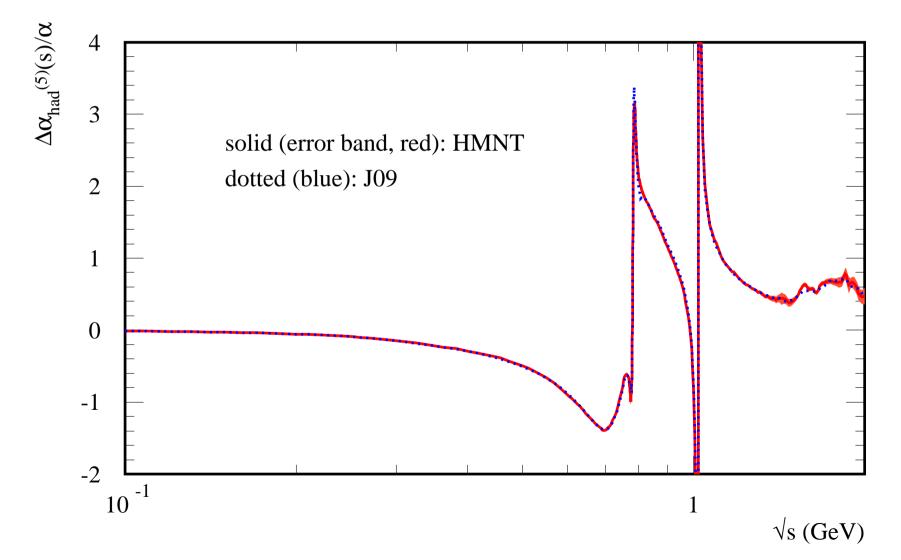
- smaller differences remain and reflect different choices, smoothing etc.

# • HLMNT compared to Novosibirsk – Timelike, $\Delta \alpha(q^2)$



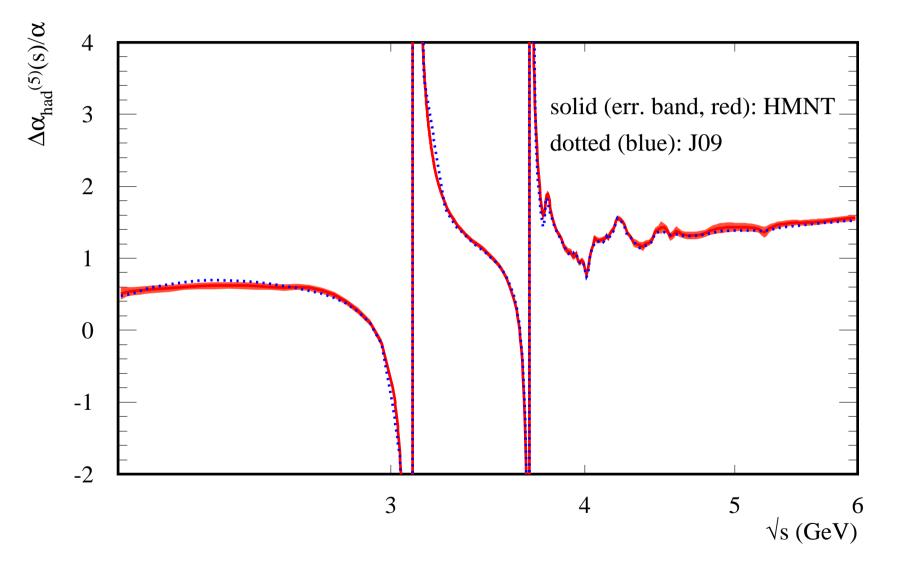





 $\rightarrow$  Differences of about one per-mille in the 'undressing' factor, up to -3/+5 per-mille in the  $\rho - \omega$  interference regime, but likely to cancel at least partly in applications.

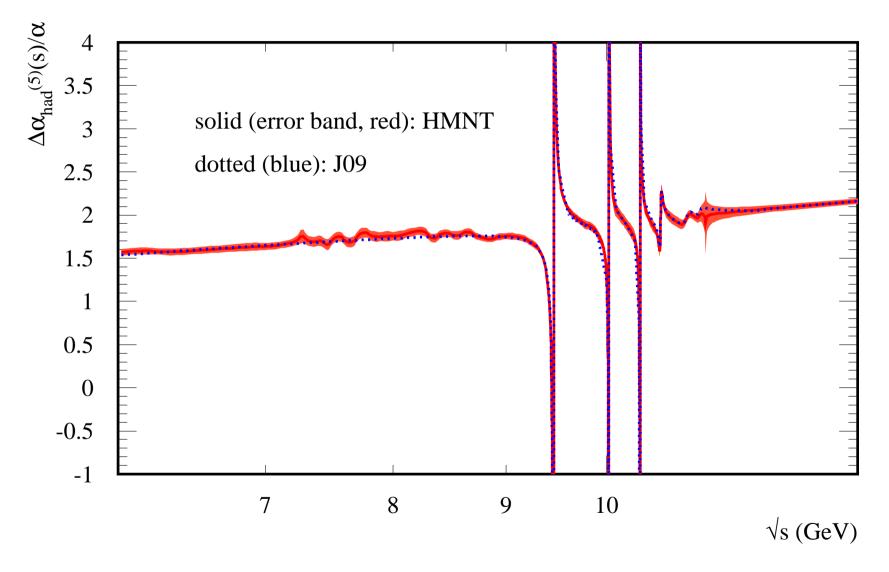
 $\rightarrow$  As expected small negative contribution from Im $\Pi$ .

More comparison plots...


HLMNT compared to Fred Jegerlehner's new version: Detailed look

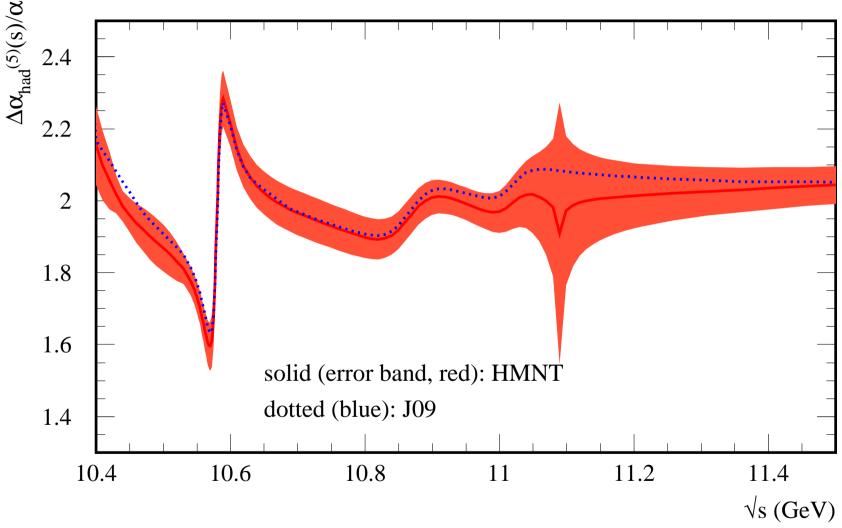
Low energies: ho and  $\phi$ 




### HLMNT compared to Fred Jegerlehner's new version: Detailed look

### Medium energies: continuum and charm

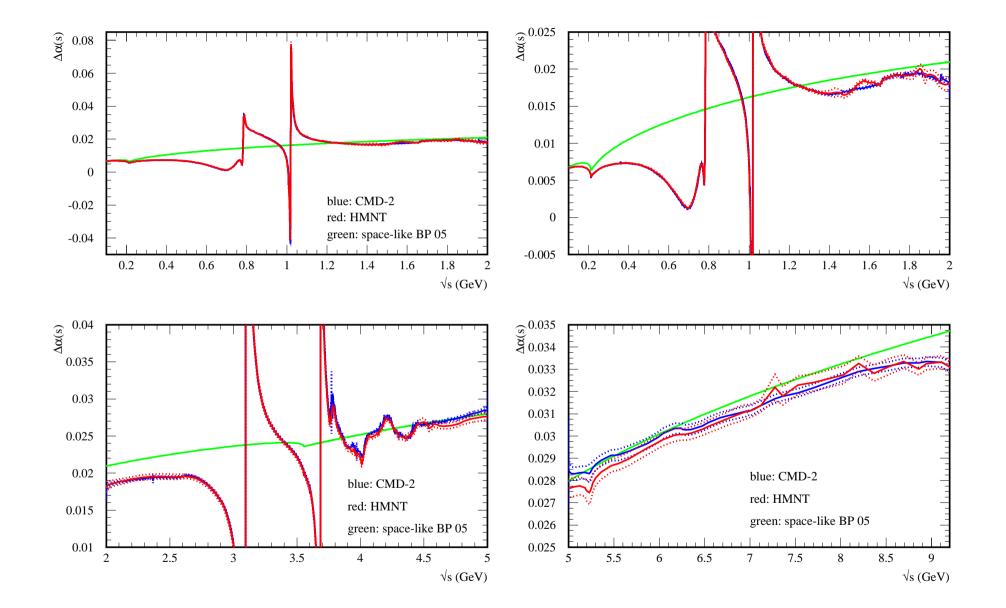



### HLMNT compared to Fred Jegerlehner's new version: Detailed look

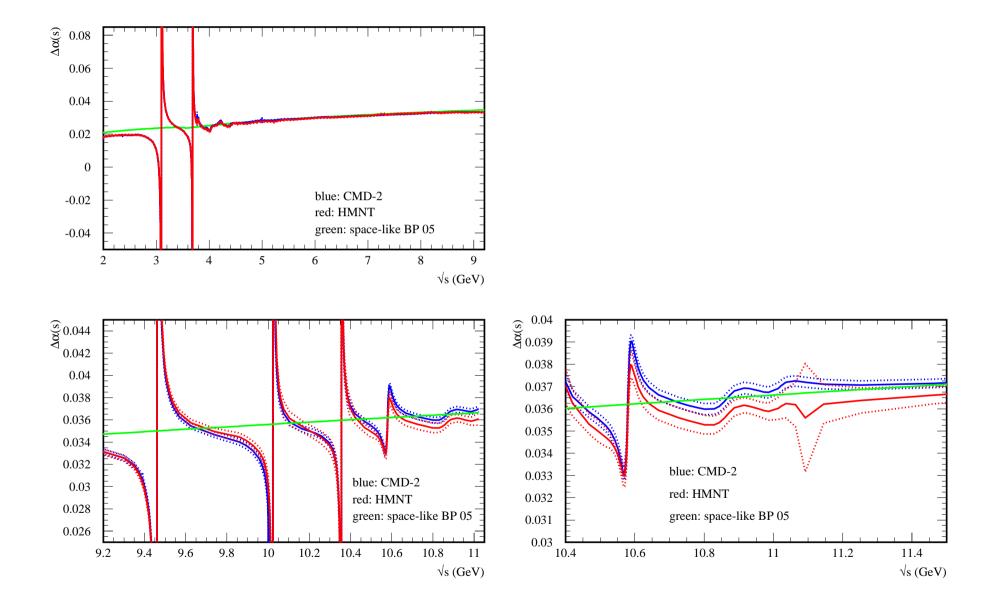
### Higher energy continuum; bottom



#### HLMNT compared to Fred Jegerlehner's new version: Detailed look


Details of higher  $\Upsilon(4, 5, 6S)$  [10580, 10860, 11020] / open bottom region




 $\rightarrow$  HLMNT still to include BaBar's  $R_{b\bar{b}}$  data; ISR unfolding.. work in progress

— expected to smooth and improve region above  $11~{\rm GeV}$ 

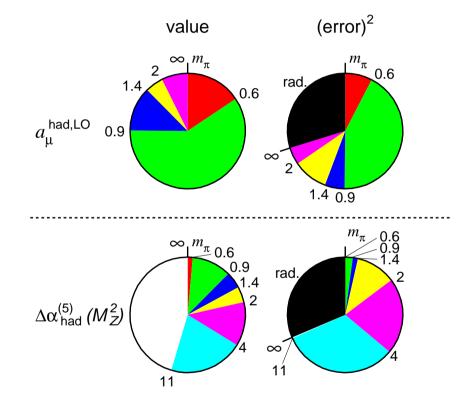
### HLMNT compared to CMD-2's routine: Detailed looks



## HLMNT compared to CMD-2's routine: three more zooms



# IV. Outlook


Further improvements

Hadronic VP still (just) the biggest error in  $a_{\mu}^{SM}$ , soon I-by-I...

Pie diagrams of contributions to  $a_{\mu}$  and  $\alpha(M_Z)$  and their errors<sup>2</sup>:

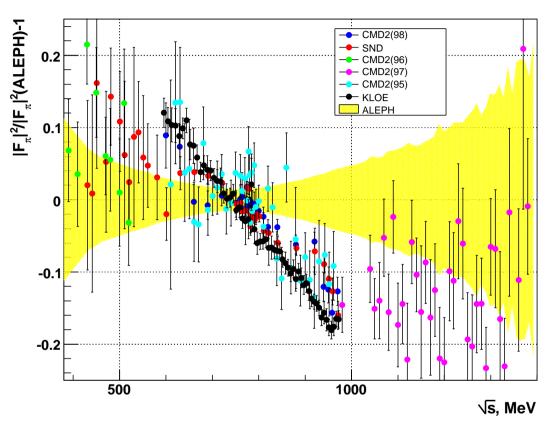
Prospects for further squeezing errors:

- More 'Rad. Ret.' in progress at KLOE
- Great opportunity for DAΦNE-2, very strong case for DAFNE-HE, in a few years SUPER-B
- Big improvement envisaged with CMD-3 and SND at VEPP2000
- Higher energies: BES-III at BEPCII in Beijing is on; opportunities for BELLE

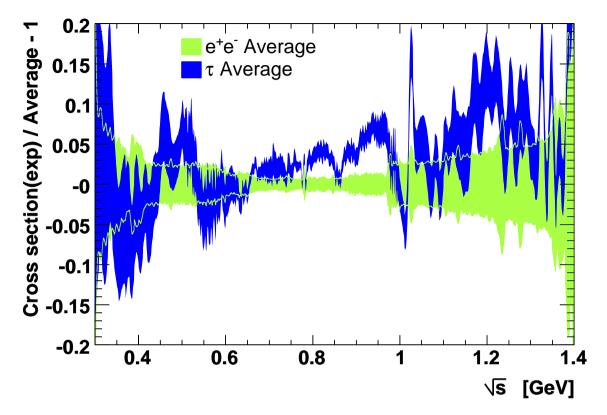


- ▶ New g 2 experiments planned at Fermilab and J-PARC. Start 2015 ?!
- ▶ Will  $a_{\mu}^{\text{SM}}$  match the planned accuracy?  $\rightarrow$  Light-by-Light may become limiting factor!

# Conclusions


- $(g-2)_{\mu}$  strongly tests *all sectors* of the SM and constrains possible physics beyond.
- SM prediction consolidated in all sectors: Loops for QED + EW, many exp. data for  $R_{had}$  plus TH (incl. *Rad. Ret.*) for hadronic VP, low energy modelling for I-by-I.
- With the same data compilations as for g-2, also the hadronic contributions to  $\Delta \alpha(q^2)$ have been determined; in turn  $\alpha(M_Z^2)$  has been improved considerably.  $M_H$  !?
- Interaction of TH + MC + EXP most important to achieve even higher precision.  $\rightarrow$  WG Radio Montecar Low
- low energy  $R_{
  m had}$  is also a place to measure  $oldsymbol{lpha_s}$  at a low scale.
- **Discrepancy** betw. SM pred. of g-2 and BNL measurement persists at  $> 3 \sigma$ .
- ► More to come from all sides. Clear and strong case for continued *and* new experiments!

The coming years will be exciting, and not only for the LHC


Extras:

- What about the au data?
- CVC hypothesis (isospin-symm.) connects  $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$  to  $e^+ e^- \rightarrow \rho, \omega \rightarrow \pi^+ \pi^-$
- Sizeable isospin-symmetry violations [from radiative corrections, mass differences  $(m_{\pi^-} \neq m_{\pi^0}), \ \rho - \omega \text{ interf.}]$ ( $\rightarrow \text{Cirigliano+Ecker+Neufeld})$
- Role of possible  $\rho^0 \rho^{\pm}$  mass difference?
- Width difference  $\Gamma_{\rho^0} \neq \Gamma_{\rho^{\pm}}$ ? Large effects possible! How reliable are the model calculations?

S Eidelman (ICHEP06): au compared to  $e^+e^-$  data



- $\rightarrow$  Disagreement between  $\tau$  and  $e^+e^-$  data already for  $[B_{\tau} B_{CVC}]_{\pi\pi^0}$ : up to 4.5  $\sigma$ ?!
- $\hookrightarrow$  Is everything under control at the % level? Is something wrong with data?  $H^-$ ?
  - KLOE Rad. Ret. agrees much better with  $e^+e^-$  scan experiments, BaBar somewhat;
- $\rightarrow$  Last update from Davier et al. gives better agreement:



 $\rightarrow$  Disagreement between  $\tau$  and  $e^+e^-$  data less severe than previously but still not solved.

- → Work from Benayoun et al. [EPJC55 (2008) 199; C65 (2010) 211, C68 (2010) 355]: mixing + isospin breaking effects in model based on *Hidden Local Symmetry*, recent work from Jegerlehner+Szafron: crucial role of ρ - γ mixing!
   → τ compatible with and confirm e<sup>+</sup>e<sup>-</sup>, but limited gain in accuracy for a<sub>µ</sub>
- $\rightarrow$  HLMNT do not use  $\tau$  data for g-2 predictions.

 $\Delta lpha(q^2)$ : Vacuum Polarisation in the space- and time-like

Why Vacuum Polarisation / running  $oldsymbol{lpha}$  corrections ?

Precise knowledge of VP /  $\alpha(q^2)$  needed for:

- Corrections for data used as input for g 2: 'undressed'  $\sigma_{\text{had}}^0$  $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$
- Determination of  $\alpha_s$  and quark masses from total hadronic cross section  $R_{had}$ at low energies and of resonance parameters.
- Part of higher order corrections in Bhabha scattering important for precise Luminosity determination.
- $\alpha(M_Z^2)$  a fundamental parameter at the Z scale (the least well known of  $\{G_\mu, M_Z, \alpha(M_Z^2)\}$ ), needed to test the SM via precision fits/constrain new physics.
- $\rightarrow$  Ingredient in MC generators for many processes.

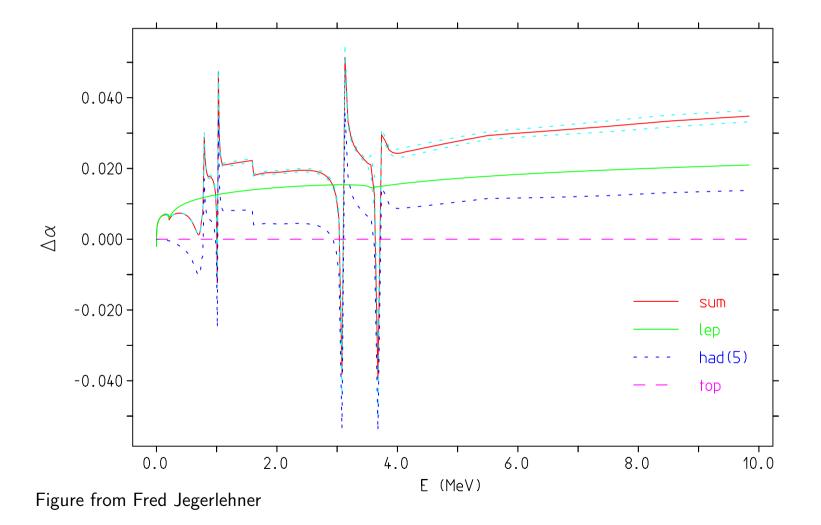
• Dyson summation of Real part of one-particle irreducible blobs  $\Pi$  into the effective, real running coupling  $\alpha_{\text{QED}}$ :

$$\Pi = \bigvee_{q}^{q^*} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q} \bigvee_{q}$$

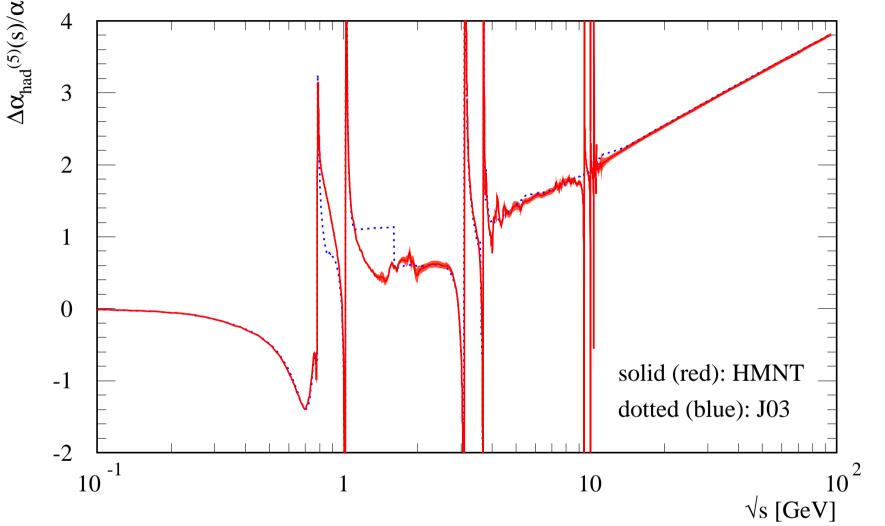
Full photon propagator  $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$ 

$$\rightsquigarrow \qquad \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP,  $\text{Re}\Pi$ , is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section,  $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$ :


$$\begin{split} \Delta \alpha_{\rm had}^{(5)}(q^2) &= -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2} \\ \left[ \to \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 \, \rightsquigarrow \, \text{ iteration needed} \right] \end{split}$$

• Observable cross sections  $\sigma_{had}$  contain the |full photon propagator|<sup>2</sup>, i.e. |infinite sum|<sup>2</sup>.  $\rightarrow$  To include the subleading Imaginary part, use dressing factor  $\frac{1}{|1-\Pi|^2}$ .

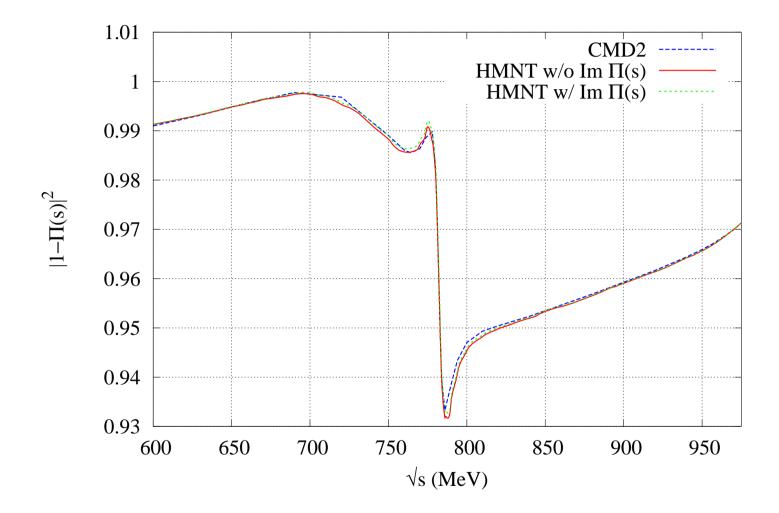

### Comparison of different compilations

• Timelike  $\alpha(s)$  from Fred Jegerlehner's (2003 routine as available from his web-page)

$$\alpha(s = E^2) = \alpha / \left( 1 - \Delta \alpha_{\rm lep}(s) - \Delta \alpha_{\rm had}^{(5)}(s) - \Delta \alpha^{\rm top}(s) \right)$$



Timelike  $\alpha(s = q^2 > 0)$  follows resonance structure:




- Step below just a feature of unfortunate grid.
- Difference below 1 GeV not expected from data.

[Comparisons with other parametrisations confirm HMNT.]

#### • HMNT compared to Novosibirsk's parametrisation

Timelike  $|1 - \Pi(s)|^2 \sim (\alpha(s)/\alpha)^2$  in  $\rho$  central energy region: A relevant correction!



 $\rightarrow$  Small but visible differences, as expected from independent compilations.

# • What about $\Delta lpha (M_Z^2)?$

→ With the same data compilation of  $\sigma_{had}^0$  as for g - 2 HLMNT find:  $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$  (HLMNT 09 prelim.) i.e.  $\alpha (M_Z^2)^{-1} = 128.947 \pm 0.020$  [HMNT '06:  $\alpha (M_Z^2)^{-1} = 128.937 \pm 0.030$ ]

#### Earlier compilations:

| Group                     | $\Delta lpha_{ m had}^{(5)}(M_Z^2)$ | remarks          |
|---------------------------|-------------------------------------|------------------|
| Burkhardt+Pietrzyk '05    | $0.02758 \pm 0.00035$               | data driven      |
| Troconiz+Yndurain '05     | $0.02749 \pm 0.00012$               | pQCD             |
| Kühn+Steinhauser '98      | $0.02775 \pm 0.00017$               | pQCD             |
| Jegerlehner '08           | $0.027594 \pm 0.000219$             | data driven/pQCD |
| $(M_0 = 2.5 \text{ GeV})$ | $0.027515 \pm 0.000149$             | Adler fct, pQCD  |
| HMNT '06                  | $0.02768 \pm 0.00022$               | data driven      |
|                           |                                     |                  |

Adler function: 
$$D(-s) = \frac{3\pi}{\alpha} s \frac{d}{ds} \Delta \alpha(s) = -(12\pi^2) s \frac{d\Pi(s)}{ds}$$
  
allows use of pQCD and minimizes dependence on data.