After the Seattle Meeting on HLBL in $(g_{\mu}-2)/2$ Simon Eidelman Budker Institute of Nuclear Physics, Novosibirsk, Russia #### Outline - 1. Motivation - 2. Theory - 3. Data - 4. Conclusions Frascati March 29, 2011 ## Motivation – I | Contribution | $a_{\mu}, 10^{-10}$ | |---------------|--| | Experiment | $11659208.9 \pm 5.4 \pm 3.3 \ (6.3)$ | | QED | 11658471.809 ± 0.015 | | Electroweak | $15.4 \pm 0.1_{\rm had} \pm 0.2_{\rm Higgs}$ | | Hadronic | 693.0 ± 4.9 | | Hadronic, LO | 692.3 ± 4.2 | | Hadronic, HO | -9.79 ± 0.09 | | Hadronic, LBL | 10.5 ± 2.6 | | Theory | 11659180.2 ± 4.9 | | ExpTheory | $28.7 \pm 8.0 \; (3.6\sigma)$ | M. Davier et al., Eur. Phys. J. C71:1515 (2011) ## Motivation – II In the very optimistic scenario of e^+e^- experiments: - KLOE measures \mathcal{F}_{π} below 1 GeV to 0.5% - CMD-3 and SND measure \mathcal{F}_{π} below 1 GeV to 0.5% and continuum below 2 GeV to 2% - Belle and BaBar measure \mathcal{F}_{π} below 1 GeV to 0.5% and continuum below 2 GeV to (2-3)% - Averaging with the current numbers gives the error of 2.6, i.e., LO and LBL are of equal importance or LBL limits accuracy Institute of Nuclear Theory (UW organized a seminar with about 35 participants working for 5 days ## Form Factor Measurements – I Form factors of pseudoscalars $(P = \pi^0, \eta, \eta')$ at all momentum transfers The main source – $\gamma\gamma$ collisions: - KLOE with a tagger π^0 , η , η' , $f_0(980)$, both with two real γ and γ^* - KEDR with a tagger π^0 , η , $\sigma_{\text{tot}}(\gamma\gamma \to h)$ with real γ and tagged with $Q^2 < 4 \cdot 10^{-5} (3 \cdot 10^{-4} \text{ GeV}^2 \text{ at } 1.8 \text{ (5) GeV}$ - BaBar and Belle single-tag for $P = \pi^0$, η , η' , BaBar already studied all, for π^0 $Q^2 < 40$ GeV², Belle started - Belle studied in the 0-tag mode with $Q^2 < 3 \text{ GeV}^2$ $\gamma \gamma \to \pi^0 \pi^0$, $\pi^+ \pi^-$, $K^+ K^-$, $K^0_S K^0_S$, $\eta \pi^0$, $\eta \eta$ March 29, 2011 #### Form Factor Measurements – II • Radiative decays: $$\gamma^* \to V \to P\gamma; \ Q1^2 = m_V^2, \ Q2^2 = 0$$ KLOE – V= ϕ , $P = \pi^0$, η , η' ; CMD-3,SND – $\rho^{(\prime)}$, $\omega^{(\prime)}$, $\phi^{(\prime)}$ • Dalitz decays of P: $$P \to \gamma \gamma^* \to \gamma l^+ l^-; 4m_l^2 < Q1^2 < m_P^2, Q2^2 = 0, l = e, \mu$$ KLOE, CMD-3, SND – $P = \pi^0, \eta, \eta'$ \bullet Double-Dalitz decays of P: $$P \to \gamma^* \gamma^* \to l^+ l^- l^+ l^-; 4m_l^2 < Q1(2)^2 < (m_P - 2m_l)^2, l = e, \mu$$ KLOE, WASA, Mainz, JLab • Dalitz decays of V: $$\gamma^* \to V \to P \gamma^* \to P l^+ l^-; 4m_l^2 < Q 1^2 < (m_V - m_P)^2, Q 2^2 = 0, l = e, \mu$$ KLOE, CMD-3, SND – $P = \pi^0, \eta, \eta'$ ### Form Factor Measurements – III - Primakoff effect $(\gamma^{(*)}A \to P A')$ JLab, Mainz; Interpretation problems - Rare decays of π^0 , $\eta \to e^+e^-$, $\mu^+\mu^-$ | Particle | π^0 | η | |--------------------|---|--| | e^+e^- | $(6.44 \pm 0.25 \pm 0.22) \cdot 10^{-8}$ | $< 2.7 \cdot 10^{-5}$ | | $\mu^+\mu^-$ | _ | $(5.7 \pm 0.7 \pm 0.5) \cdot 10^{-6}$ | | $e^+e^-\gamma$ | $(1.140 \pm 0.024 \pm 0.033) \cdot 10^{-2}$ | $(7.10 \pm 0.64 \pm 0.46) \cdot 10^{-3}$ | | $\mu^+\mu^-\gamma$ | _ | _ | | $e^+e^-e^+e^-$ | $(3.46 \pm 0.19) \cdot 10^{-5}$ | $< 6.9 \cdot 10^{-5}$ | S.Eidelman, BINP p.6/7 ## Conclusions - There are 5-6 different approaches (even more groups), hot disputes but very close numbers - Obvious progress of lattice calculations - There is real interest to all possible experiments: $\gamma^{(*)}\gamma^{(*)} \to \pi^0, \eta, \eta',$ radiative and Dalitz decays of vector and pseudoscalar mesons, $\pi^0 \to e^+e^-$ and KLOE has very good opportunities everywhere! - An arxiv preprint expected in April, a detailed summary paper to appear in 6 months