29 March 2011

Status of g-2 and $lpha_{
m em}$

Thomas Teubner

I. $(g-2)_{\mu}$: Introduction

II. Recent developments in $(g-2)_{\mu}$; Hadronic Vacuum Polarisation contributions

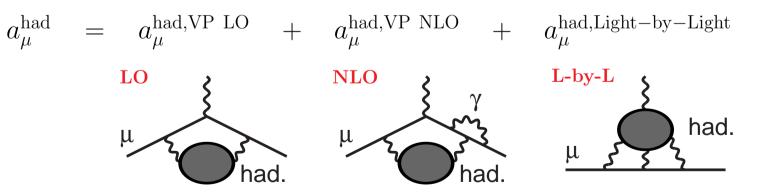
- 2π : KLOE 2008 and 2010, BaBar 2009 analyses
- Radiative Return data below 2 GeV
- New HLMNT compilation; comparison with other groups; SM vs. BNL

III. $\Delta \alpha(q^2)$: Running QED coupling; $\alpha(M_Z^2)$ IV. Outlook

Thanks to my collaborators Kaoru Hagiwara, Ruofan Liao, Alan Martin and Daisuke Nomura

I. $(g-2)_{\mu}$: Introduction

- $a_{\mu} = (g-2)_{\mu}/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{New Physics?}}$
- QED: Predictions consolidated, further work (numerical five-loop) ongoing, big surprises very unprobable, error formidably small: a^{QED}_μ = 116584718.08(15) · 10⁻¹¹ ✓ Kinoshita et al.
- EW: reliable two-loop predictions, accuracy fully sufficient: $a_{\mu}^{\text{EW}} = (154 \pm 2) \cdot 10^{-11} \checkmark$ Czarnecki et al., Knecht et al.
- Hadronic contributions: uncertainties completely dominate Δa_{μ}^{SM} !



▶ Hadronic contributions from low γ virtualities not calculable with perturbative QCD - Lattice simulations difficult; promising first steps, but accuracy not (yet?) sufficient

- ► Light-by-Light:
- No dispersion relation for L-by-L. First Principles calculations from lattice QCD are underway by two groups: QCDSF and T Blum et al. Both approaches promising but at an early stage and no results yet.

Also first results based on Dyson-Schwinger eqs. by C Fischer et al.

- 'Convergence' of different recent model calculations. HMNLT numbers below use compilation from J Prades, E de Rafael, A Vainshtein: $a_{\mu}^{L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$
- Compatible recent result from F Jegerlehner, A Nyffeler: $a_{\mu}^{L-by-L} = (11.6 \pm 4.0) \cdot 10^{-10}$
- \rightarrow For more details and latest news see talks by Fred Jegerlehner and Simon Eidelman.
- ► Vacuum Polarisation contributions from exp. σ(e⁺e⁻ → γ^{*} → hadrons) data or from τ → ν_τ + hadrons spectral functions; isospin breaking?! → talks by Robert Szafron and FJ via dispersion integral (based on analyticity and unitarity):

$$a_{\mu}^{\text{had,VP LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s), \text{ with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63...1)$$

 \rightarrow Kernel $K \rightsquigarrow$ weighting towards smallest energies. σ_{had}^0 the undressed cross section

ightarrow Similar approach with different kernel functions for NLO VP contributions $a_{\mu}^{
m had,VP~NLO}$

II. Recent developments in $(g-2)_{\mu}$; Hadronic VP contributions

• Compilation of $\sigma_{ m had}^0(s)$

- For low energies, need to sum ~ 25 exclusive channels. $[2\pi, 3\pi, KK, 4\pi, \ldots]$
- 1.43 2 GeV: sum exclusive channels and/or use old inclusive data
- \bullet above $\sim 2~{\rm GeV}:$ inclusive data or use of perturbative QCD.
- In each channel: Data combination from many experiments, non-trivial w.r.t. error analysis/correlations/different energy ranges.

[Different methods/machinery used by different groups.]

- Note: $\sigma^{0}(s)$ must be the *undressed* hadronic cross section (i.e. photon VP subtracted $[\sigma^{0}(s) = \sigma(s) \cdot (\alpha/\alpha(s))^{2}]$, otherwise double-counting with $a_{\mu}^{\text{had,VP NLO}}$)
- but must include final state photon radiation.
- → Uncertainty in treatment of radiative corrections, especially for older data sets! Assign additional error. HLMNT: $\delta a_{\mu}^{\text{had,VP+FSR}} \simeq 2 \times 10^{-10} \ [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$

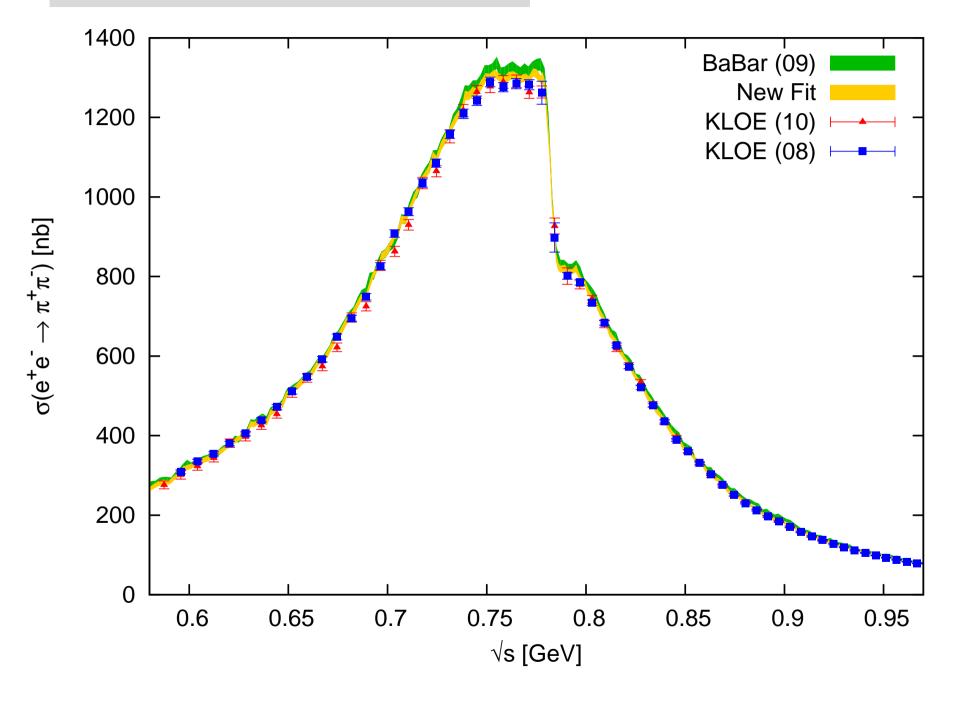
Most important channels with changes in input data since ${\sim}2006$

The main exps. for 'low' energy hadronic cross sections in e^+e^- ; channels

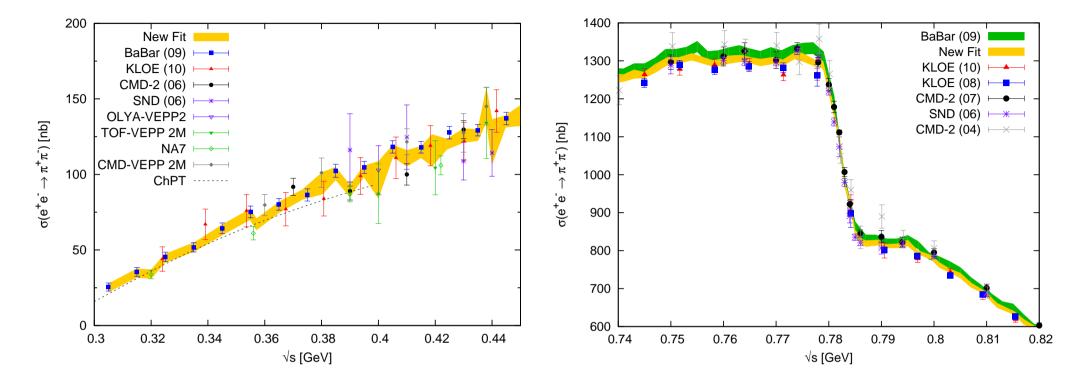
- CMD-2, [VEPP-2M], Novosibirsk (K^+K^- , $2\pi^+2\pi^-\pi^0$, $2\pi^+2\pi^-2\pi^0$)
- SND, [VEPP-2M], Novosibirsk $(K^+K^-, K_S^0K_L^0)$
- KLOE, [DA Φ NE], Frascati ($\pi^+\pi^-(\gamma)$, $\omega\pi^0$)
- BaBar, [PEP-II], SLAC, Stanford ($\pi^+\pi^-(\gamma)$, $K^+K^-\pi^0$, $K_S^0\pi K$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, $2\pi^+2\pi^-\eta$, $2\pi^+2\pi^-2\pi^0$, $KK\pi\pi$, $K^+K^-K^+K^-$)
- BELLE, [KEKB], KEK, Tsukuba
- BES, [BEPC], Beijing (inclusive $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ data)
- CLEO, [CESR], Cornell (inclusive R)
- In principle inclusion of new data in updated analyses straightforward...

Concentrate on two cases where not: most important 2π and the 1.43-2 GeV region.

The most important 2π channel (> 70%) 87



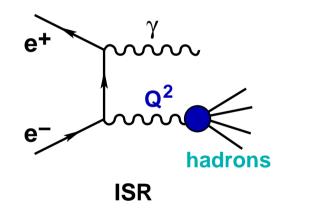
Zoom in low energy (2π threshold) and ρ -peak / ρ - ω interference region



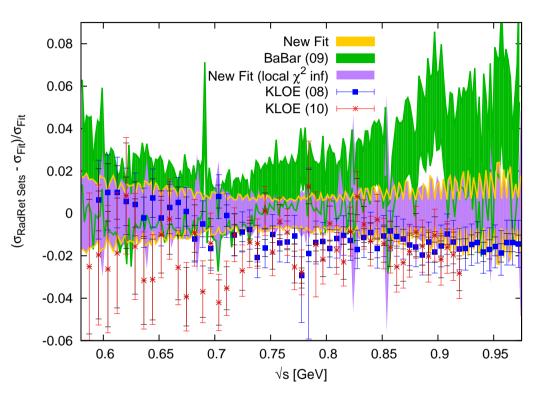
- 'Direct Scan': Very good agreement between data from CMD-2 and SND, fully consistent with earlier data.
- Low energy points crucial for recent improvements of $a_{\mu}^{\pi\pi}$.
- 'Radiative Return': KLOE and BaBar show slight tension with the Direct Scan data, and with each other;
- \rightarrow Differences in shape and BaBar high at medium and higher energies:

KLOE 08/10 and BaBar 09 $\pi\pi(\gamma)$ Radiative Return data compared to combination of all

Radiative Return (at fixed e^+e^- energy) has recently developed (TH + EXP) into a powerful method with great potential, *complementary to direct energy scan*

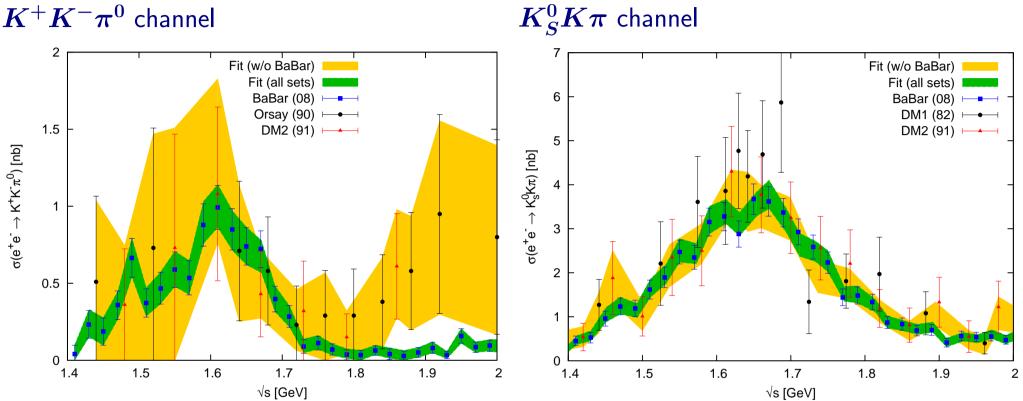


Normalised diff. of cross sections [HLMNT]



- Method used first by 'meson factories', where high statistics compensates α/π suppression of γ radiation.
- Results for 2π channel slightly different in shape, but completely different method, Monte Carlos etc.
- Comb. of all data on same footing, before integration (purple band): still good χ²_{min}/d.o.f. ~ 1.5 of fit]
 → limited gain in accuracy due to 'tension'; pull-up (mainly from BaBar):
 HLMNT 10: a^{2π}_μ(0.32 2 GeV) = (504.23 ± 2.97) · 10⁻¹⁰ [pull a_μ up by ~ 5.5 units]

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

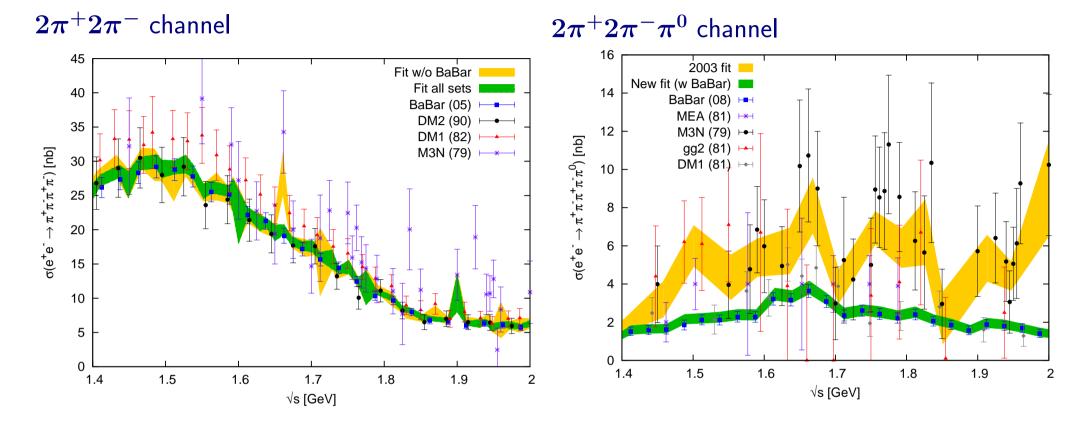


 $K^+K^-\pi^0$ channel

Big improvements over earlier data compilations in many channels. \rightarrow

BaBar Radiative Return data lower than less precise older data in most channels.

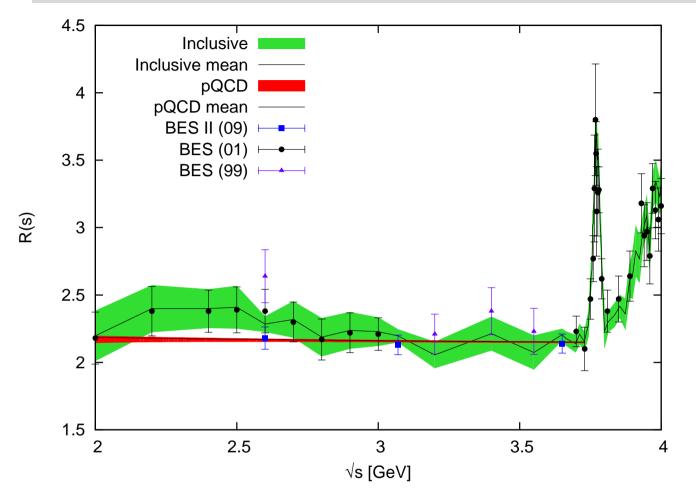
Region below 2 GeV: influence of recent BaBar Radiative Return analyses (contd)



 \rightarrow Error 'inflation' needed when data inconsistent,

e.g. BaBar lower than previous measurements in $2\pi^+2\pi^-\pi^0$ channel \rightsquigarrow HLMNT: Errors for g-2 inflated by local $\sqrt{\chi^2_{\min}/d.o.f.}$ [global $\chi^2_{\min}/d.o.f. = 1.4$]

Perturbative QCD vs. inclusive data above 2 GeV (below charm threshold)



- Latest BES data agree very well with pQCD [Davier et al. use pQCD from 1.8 GeV]
- R_{uds} from pQCD mostly below data fit in region above 2 GeV
- HLMNT use pQCD only for $2.6 < \sqrt{s} < 3.7$ GeV and with (larger) BES errors [would have small shift downwards ($\sim -1.4 \cdot 10^{-10}$ for a_{μ}) if used from 2 GeV]

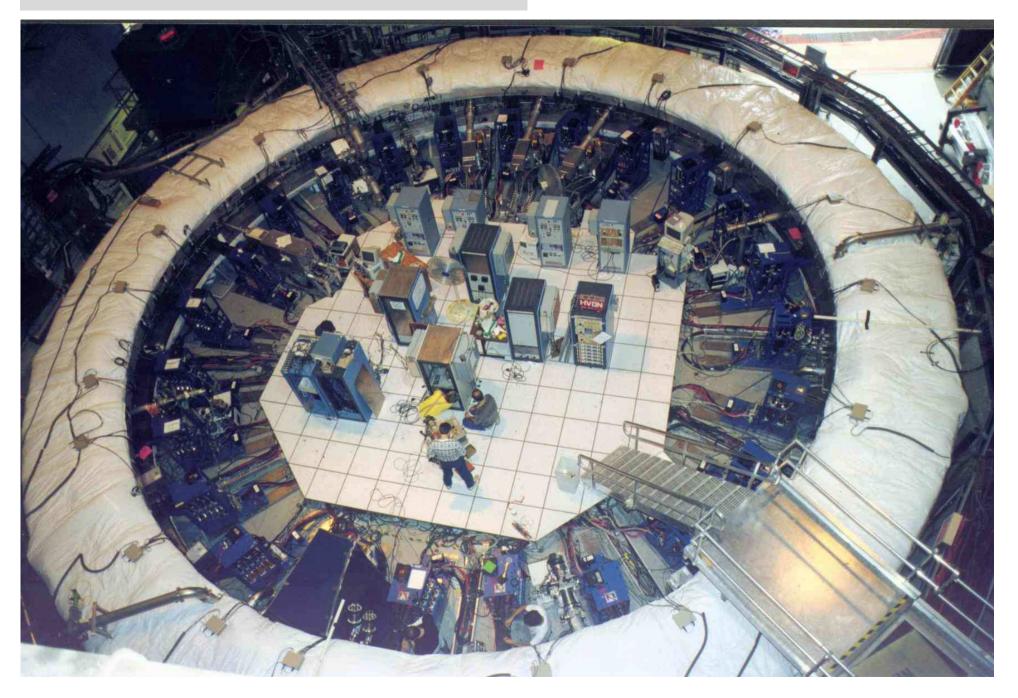
The different SM contributions numerically

Source	contr. to $a_{\mu} imes 10^{11}$	remarks	
QED	116 584 718.08 \pm 0.15	up to 5-loop (Kinoshita+Nio, Passera)	
	(was $116\ 584\ 719.35\pm1.43$)	▶ incl. recent updates of α	
EW	154 ± 2	2-loop, Czarnecki+Marciano+Vainshtein	
		(agrees very well with Knecht+Peris+Perrottet+deRafael)	
LO hadr.	6923 ± 42	Davier <i>et al.</i> '10 (e^+e^-)	
	6908 ± 47	F Jegerlehner $+$ R Szafron '11 (e^+e^-)	
	$6894 \pm 42 \pm 18$	Hagiwara+Martin+Nomura+T '06	
new:	$6954 \pm 37 \pm 21$	HLMNT 11 (prel.), this analysis, comb. error 43	
NLO hadr.	$-98.5 \pm 0.6 \pm 0.4$	HLMNT, in agreem. with Krause '97, Alemany+D+H '98	
L-by-L	105 ± 26	Prades+deRafael+Vainshtein	
agrees with	$< 159~(95\%{ m CL})$	upper bound from Erler+Toledo Sánchez from PHD	
< Nov. 2001:	(-85 ± 25)	the 'famous' sign error, $2.6 \sigma \rightarrow 1.6 \sigma$	
\sum	116591830 ± 49	HLMNT 11 (prel.)	

The theory prediction of g-2 is now slightly more precise than the BNL measurement

SM vs BNL: A sign for New Physics?

Covered storage ring (Pic. from the g-2 Collab.)



 $a_{\mu}^{\rm SM}$ compared to BNL world av. HMNT (06) JN (09) Davier et al, τ (10) Davier et al, e^+e^- (10) JS (11) HLMNT (10) **HLMNT (11)** --- experiment -----BNL BNL (new from shift in λ) L....l....l....l....l.....l..... 170 18 180 190 200 210 $a_{\rm II} \times 10^{10} - 11659000$ Davier et al.: $1.9/3.9/3.2 \sigma$, '10: 3.6σ JN 09: 3.2σ [179.0 ± 6.5], JS '11: 3.3σ HLMNT 09: was 4.0σ [w/out BaBar 09 2π]

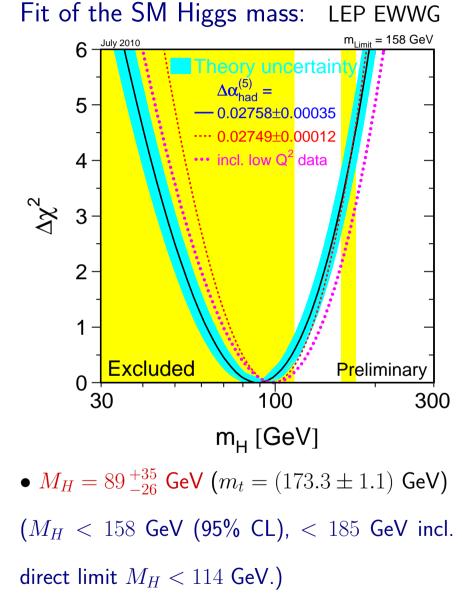
Recent changes

- TH: Updated/improved LO hadronic (from e^+e^-) [Many new data from CMD-2, SND, KLOE, BaBar, CLEO, BES. Excl. data below 2 GeV (BaBar RadRet)] $(6894 \pm 46) \cdot 10^{-11} \longrightarrow (6954 \pm 43) \cdot 10^{-11}$
- TH: Use of recent L-by-L compilation [PdeRV] $a_{\mu}^{\rm L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$
- EXP: Small shift of BNL's value due to CODATA's shift of muon to proton magn. moment ratio: Was $a_{\mu} = 116\ 592\ 080(63) \times 10^{-11}$
 - $\rightarrow a_{\mu} = 116\ 592\ 089(63) \times 10^{-11}\ (0.5ppm)$
 - ► With this input HLMNT (prel. '11 ~ '10) get $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (25.7 \pm 8.0) \cdot 10^{-10}$, ~ **3.2** σ

III. The running QED coupling $\alpha(q^2)$... and the Higgs mass

$$\gamma^*_q$$

- Vacuum polarisation leads to the 'running' of α from $\alpha(q^2=0)~=~1/137.035999084(51)$ to $\alpha(q^2=M_Z^2)\sim 1/129$
- $\alpha(q^2) = \alpha / \left(1 \Delta \alpha_{\text{lep}}(q^2) \Delta \alpha_{\text{had}}(q^2)\right)$
- Again use of a dispersion relation: $\Delta \alpha_{\rm had}^{(5)}(q^2) = -\frac{\alpha q^2}{3\pi} P \int_{s_{\rm th}}^{\infty} \frac{R_{\rm had}(s) ds}{s(s-q^2)}$
- Hadronic uncertainties $\rightsquigarrow \quad \alpha$ the least well known EW param. of $\{G_{\mu}, M_Z, \alpha(M_Z^2)\}$!
- We find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02759 \pm 0.00015$ [HLMNT 11 prel.: 0.02764 ± 0.00010] i.e. $\alpha (M_Z^2)^{-1} = 128.953 \pm 0.020$ (HLMNT 10)
- ▶ HLMNT-routine for $\alpha(q^2)$ & $R_{\rm had}^{\rm data}$ available

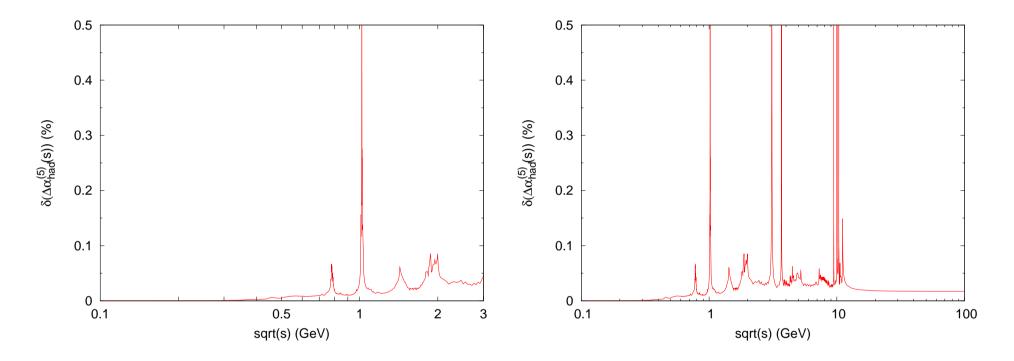


• M_H moves further down with new $\Delta \alpha$.

Features of the HLMNT VP code

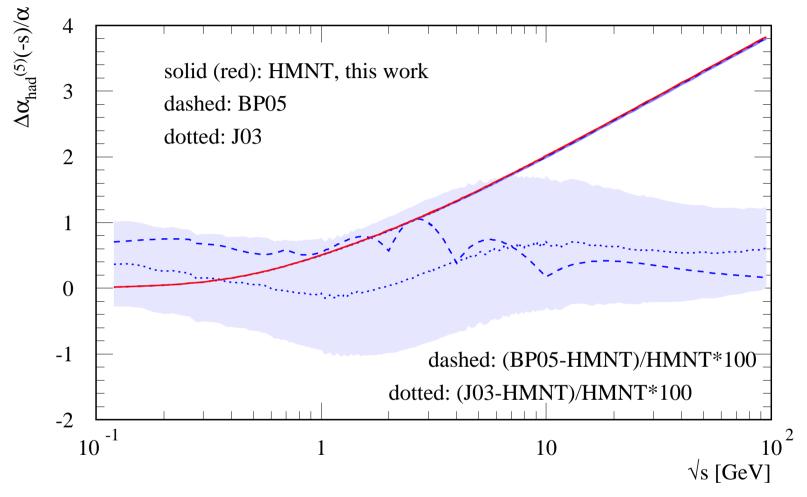
- Latest version is VP_HLMNT_v2_0, version 2.0, 15 July 2010
- Simple set of (standard) Fortran routines; completely standalone, no libs needed; all explanations in comment-headers
- Gives separately real and imaginary part ($\Delta lpha(s)$ and R(s))
- Tabulation/interpolation of hadronic part, for both space- and time-like region, including errors; no input data files or rhad installation needed
- Leptonic part coded analytically; all special function included (partly with custom made expansions)
- top contribution in the same way
- → Flag to include or exclude very narrow resonances J/ψ , ψ' , $\Upsilon(1 6 S)$ [ϕ always included via integral over final state data $(3\pi, KK)$]

Error of VP in the timelike regime at low and higher energies (HLMNT compilation):



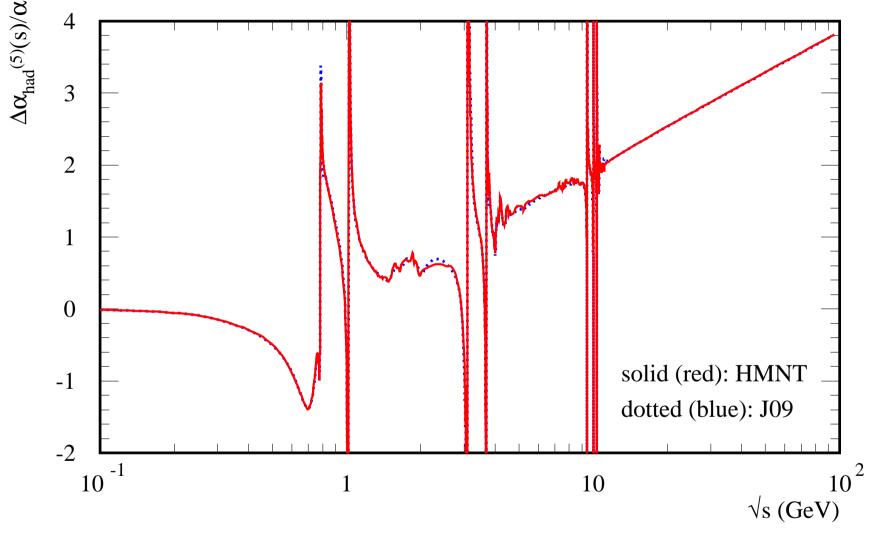
 → Below one per-mille (and typically ~ 5 · 10⁻⁴), apart from Narrow Resonances where the bubble summation is not well justified.
 Enough in the long term? Need for more work in resonance regions.

• Comparison of Spacelike $\Delta \alpha_{had}^{(5)}(-s)/\alpha$ (smooth $\alpha(q^2 < 0)$)



- Differences between parametrisations clearly visible but within error band (of HLMNT)
- Few-parameter formula from Burkhardt+Pietrzyk slightly 'bumpy' but still o.k.
- Encourage use of more accurate recent tabulations; $\Delta lpha (M_Z^2)$

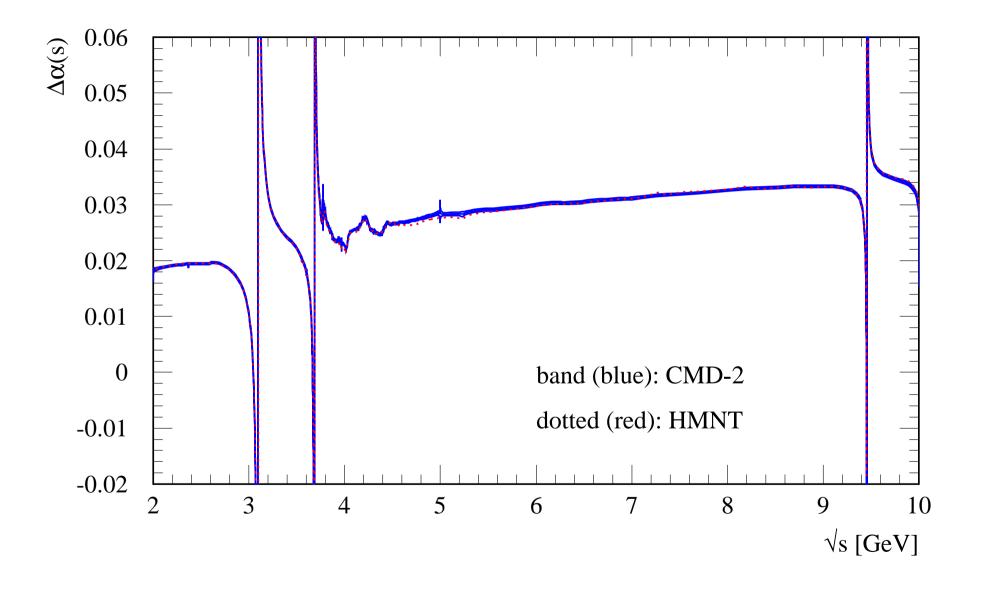
• $\Delta \alpha(q^2)$ in the time-like: HLMNT compared to Fred Jegerlehner's new routines



 \rightarrow with new version big differences (with 2003 version) gone

- smaller differences remain and reflect different choices, smoothing etc.

• HLMNT compared to Novosibirsk – Timelike, $\Delta \alpha(q^2)$



IV. Outlook

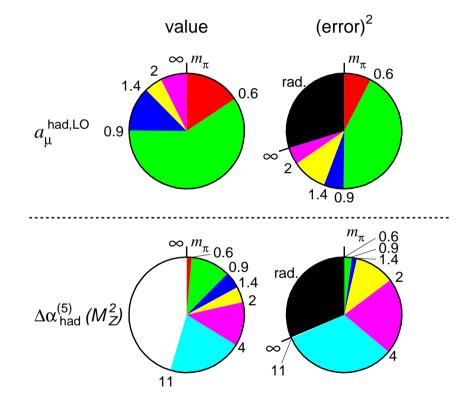
Further improvements

Hadronic VP still (just) the biggest error in a_{μ}^{SM} , soon I-by-I...

Pie diagrams of contributions to a_{μ} and $\alpha(M_Z)$ and their errors²:

Prospects for further squeezing errors:

- More 'Rad. Ret.' in progress at KLOE
- Great opportunity for DAΦNE-2, very strong case for DAFNE-HE, in a few years SUPER-B
- Big improvement envisaged with CMD-3 and SND at VEPP2000
- Higher energies: BES-III at BEPCII in Beijing is on; opportunities for BELLE



- ▶ New g 2 experiments planned at Fermilab and J-PARC. Start 2015 ?!
- ▶ Will a_{μ}^{SM} match the planned accuracy? \rightsquigarrow Light-by-Light may become limiting factor!

Conclusions

- $(g-2)_{\mu}$ strongly tests *all sectors* of the SM and constrains possible physics beyond.
- SM prediction consolidated in all sectors: Loops for QED + EW, many exp. data for R_{had} plus TH (incl. *Rad. Ret.*) for hadronic VP, low energy modelling for I-by-I.
- With the same data compilations as for g-2, also the hadronic contributions to $\Delta \alpha(q^2)$ have been determined; in turn $\alpha(M_Z^2)$ has been improved considerably. M_H !?
- Interaction of TH + MC + EXP most important to achieve even higher precision. \rightarrow WG Radio Montecar Low
- low energy $R_{
 m had}$ is also a place to measure $oldsymbol{lpha_s}$ at a low scale.
- **Discrepancy** betw. SM pred. of g-2 and BNL measurement persists at $> 3 \sigma$.
- ► More to come from all sides. Clear and strong case for continued *and* new experiments!

The coming years will be exciting, and not only for the LHC

Extras:

 $\Delta lpha(q^2)$: Vacuum Polarisation in the space- and time-like

Why Vacuum Polarisation / running $oldsymbol{lpha}$ corrections ?

Precise knowledge of VP / $\alpha(q^2)$ needed for:

- Corrections for data used as input for g 2: 'undressed' σ_{had}^0 $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$
- Determination of α_s and quark masses from total hadronic cross section R_{had} at low energies and of resonance parameters.
- Part of higher order corrections in Bhabha scattering important for precise Luminosity determination.
- $\alpha(M_Z^2)$ a fundamental parameter at the Z scale (the least well known of $\{G_\mu, M_Z, \alpha(M_Z^2)\}$), needed to test the SM via precision fits/constrain new physics.
- \rightarrow Ingredient in MC generators for many processes.

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling α_{QED} :

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\rightsquigarrow \qquad \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP, $\text{Re}\Pi$, is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section, $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$:

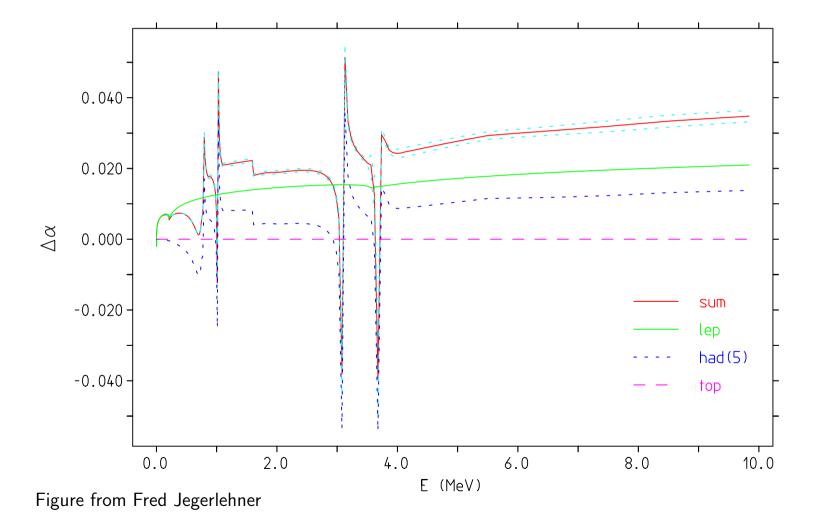
$$\begin{split} \Delta \alpha_{\rm had}^{(5)}(q^2) &= -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2} \\ & \left[\rightarrow \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 \, \rightsquigarrow \, \text{ iteration needed} \right] \end{split}$$

• Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|². \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$.

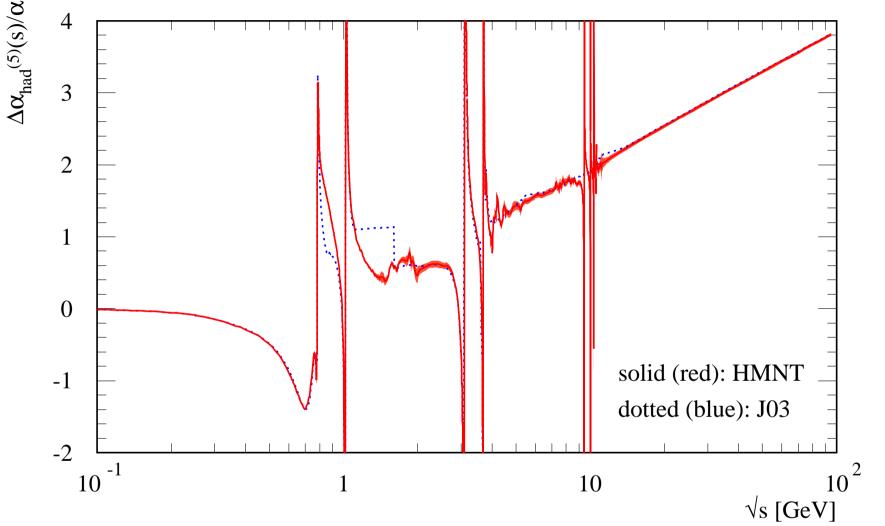
Comparison of different compilations

• Timelike $\alpha(s)$ from Fred Jegerlehner's (2003 routine as available from his web-page)

$$\alpha(s = E^2) = \alpha / \left(1 - \Delta \alpha_{\rm lep}(s) - \Delta \alpha_{\rm had}^{(5)}(s) - \Delta \alpha^{\rm top}(s) \right)$$



Timelike $\alpha(s = q^2 > 0)$ follows resonance structure:

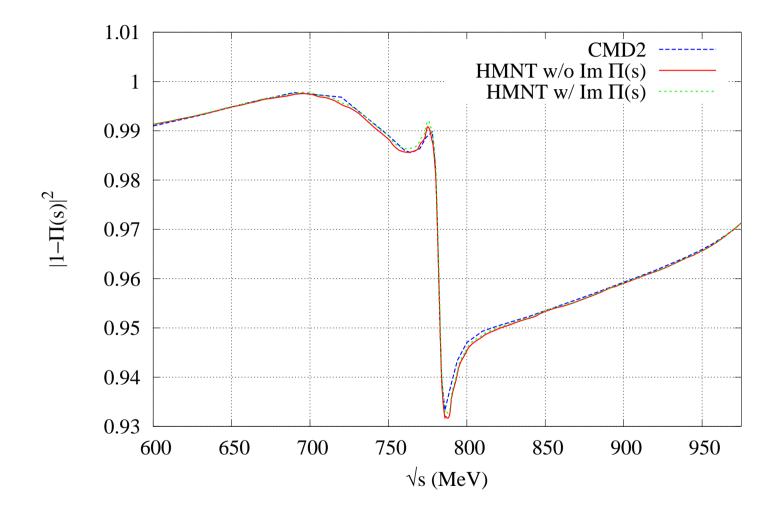


- Step below just a feature of unfortunate grid.
- Difference below 1 GeV not expected from data.

[Comparisons with other parametrisations confirm HMNT.]

• HMNT compared to Novosibirsk's parametrisation

Timelike $|1 - \Pi(s)|^2 \sim (\alpha(s)/\alpha)^2$ in ρ central energy region: A relevant correction!



 \rightarrow Small but visible differences, as expected from independent compilations.

• What about $\Delta lpha (M_Z^2)?$

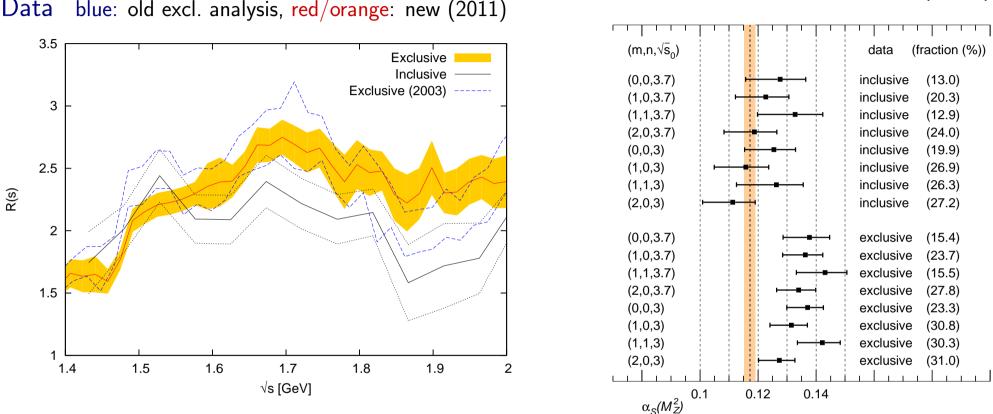
→ With the same data compilation of σ_{had}^0 as for g - 2 HLMNT find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$ (HLMNT 09 prelim.) i.e. $\alpha (M_Z^2)^{-1} = 128.947 \pm 0.020$ [HMNT '06: $\alpha (M_Z^2)^{-1} = 128.937 \pm 0.030$]

Earlier compilations:

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	remarks
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	data driven
Troconiz+Yndurain '05	0.02749 ± 0.00012	pQCD
Kühn+Steinhauser '98	0.02775 ± 0.00017	pQCD
Jegerlehner '08	0.027594 ± 0.000219	data driven/pQCD
$(M_0 = 2.5 \text{ GeV})$	0.027515 ± 0.000149	Adler fct, pQCD
HMNT '06	0.02768 ± 0.00022	data driven

Adler function:
$$D(-s) = \frac{3\pi}{\alpha} s \frac{d}{ds} \Delta \alpha(s) = -(12\pi^2) s \frac{d\Pi(s)}{ds}$$

allows use of pQCD and minimizes dependence on data.



Sum-rules 'determining' α_S (2003):

Data blue: old excl. analysis, red/orange: new (2011)

• Shape similar, but normalisation different

- Question of completeness/quality of sum of exclusive data vs. reliability/systematics of old inclusive data ($\gamma\gamma2$, MEA, M3N, BBbar)
- HMNT previously (2003/06) have used incl. data, in line with sum-rule analysis

Check against perturbative QCD: QCD \sum -rule analysis

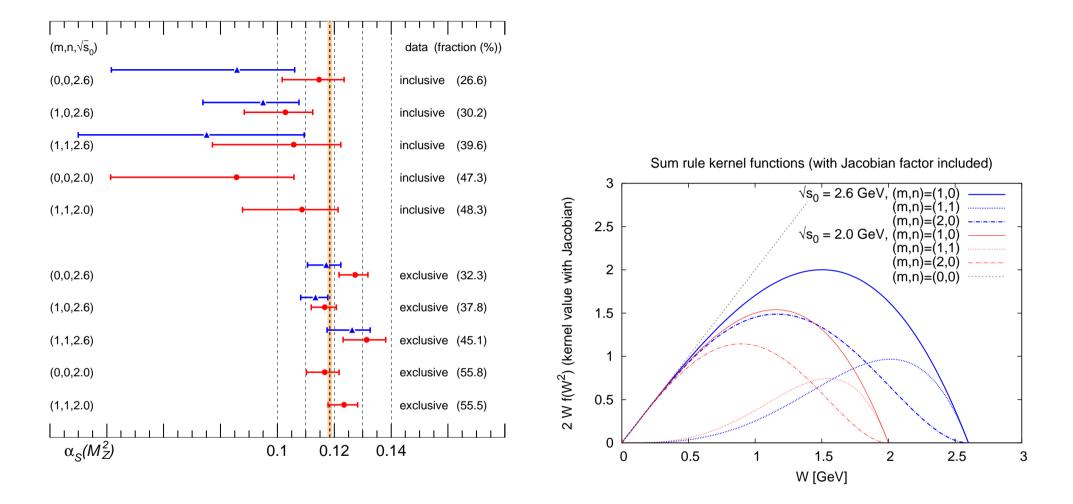
$$\int_{C}^{s_0} \mathrm{d}s \, \mathbf{R}(s) f(s) = \int_{C} \mathrm{d}s \, D(s)g(s) \,, \qquad \text{with} \quad D(s) \equiv -12\pi^2 s \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{\Pi(s)}{s}\right)$$

 $\Re s$

- The Adler D function is calculable in pQCD: $D(s) = D_0(s) + D_m(s) + D_{np}(s)$.
- Take $f(s) = (1 s/s_0)^m (s/s_0)^n$ to maximise sensitivity to the required region, g(s) follows.
- Choose s_0 below the open charm threshold ($n_f = 3$ for pQCD).
- For m = 1, n = 0 one gets e.g.

$$\int_{s_{\rm th}}^{s_0} \mathrm{d}s \, R(s) \left(1 - \frac{s}{s_0} \right) = \frac{i}{2\pi} \int_C \, \mathrm{d}s \, \left(-\frac{s}{2s_0} + 1 - \frac{s_0}{2s} \right) D(s) \, .$$

HLMNT's new sum-rule analysis:



- New data have changed the picture \rightarrow sum over exclusive agrees better with QCD
- Still rely on isospin relations for missing channels [sizeable error from $K\bar{K}\pi\pi$]
- From HLMNT 10: Use of more precise sum over exclusive (\hookrightarrow shift up by $\sim +3 \cdot 10^{-10}$)