Hidrag - WP1

G. Gaudio - Dual-readout meeting - 07.09.2022

Module geometry (From call project)

Istituto Nazionale di Fisica

G. Gaudio - Dual-readout meeting - 07.09.2022

Istituto Nazionale di Fisica Nucleare

1 Module: 2 × 5 MMs ~ 13 × 13 cm²

1 MiniModule: 32x16 channels 512 in total 256S +256 C

Activities

WP1 Activity: Choice of baseline options for scintillating and Čerenkov fibres, choice of baseline options for absorber material and layout, choice of PMTs for external ring readout. Definition of construction procedure, including the coupling of fibres to light sensors. Construction of prototypes and modules for the full-containment calorimeter.

WP1 Description of Work and Role

	T1.1.	Identification of candidates for Čerenkov and scintillating fibre
	T1.2.	Absorber material choice [M1-12][PI,PV]
$ \longrightarrow $	T1.3.	PMT choice and layout optimisation [M1-12][PI]
	T1.4.	Definition of Quality Control (QC) procedure and criteria for Č
		fibres [M1-12][MI,PI,PV]
$ \rightarrow $	T1.5.	Definition of QC procedure and criteria for PMTs [M1-12][PI]
$ \longrightarrow $	T1.6.	Dimensions and construction method of the building elements
	T1.7.	Dimensions and assembly procedure of single towers with a se
		[M13-18][PI,PV]
	T1.8.	Definition of QC procedure and criteria for single towers [M13
	T1.9.	PMT procurement and qualification [M13-18][PI]
	T1.10.	Construction of full-containment prototype and the dSiPM mod
	T1.11.	Engineering design of projective towers [M19-36][PI]

ores [M1-12][MI,PI,PV]

Čerenkov and scintillating

PI] ts [M7-18][MI,PI,PV] self-supporting structure

13-18][MI,PI,PV]

odule [M19-30][PI,PV]

Milestones & Deliverables

WP1 Milestones

- Identification of baseline options: absorber, fibres and PMTs [M12] M1.1.
 - Start of module construction [M19] M1.2.
 - M1.3. End of module construction and sensor integration [M30]

WP1 Deliverables

- Full characterisation of chosen baseline options [M12] D1.1.
- D1.2. Single tower of final dimensions built with the selected absorber and fibers and with the final procedure [M20]
- Final prototype built and integrated with readout sensors [M30] D1.3.

Gantt chart

# Title		Given Work	202	202 2022					2023				2024				
			Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q	
0	▼ HiDRa																
1	▼ WP1: Mechanics and fibre characterisation																
2	T1.1 Identification of candidates for Cerenkov and scintillating fibres	12 months															
3	T1.2 Absorber material choice	12 months															
4	T1.3 PMT choice and layout optimisation	12 months															
5	M1.1: Identification of baseline options: absorber, fibres and PMTs						L.	>									
6	T1.4 Definition of Quality Control (QC) procedure and criteria for Cerenkov and scintillating fibres	12 months															
7	T1.5 Definition of Quality Control (QC) procedure and criteria for PMTs	12 months															
8	T1.6 Dimensions and construction method of the building elements	1 year															
9	T1.7 Dimensions and assembly procedure of single towers with a self-supporting structure	6 months															
10	T1.8 Definition of QC procedure and criteria for single towers	6 months															
11	M1.2: Start of module construction								\square	\rightarrow							
12	T1.9 PMT procurement and qualification								\rightarrow								
13	T1.10 Construction of full-containment prototype and dSiPM module	12 months							Ļ	· • •							
14	M1.3 End of module construction and sensor integration																
15	T1.11 Engineering design of projective towers	18 months															

T1.1 and T1.4 Fibers

Scintillating fibres:

- Tested few samples from Saint Gobain
- Best performance (attenuation length) still for Kuraray SCSF-78

Scintillating fibres: **+**

- Tested few samples from Saint Gobain
- Best performance (attenuation length) still for Kuraray SCSF-78
- Choice of Kuraray SCSF-78 also for better economical offer
 - Issue with timeline production due to refurbishing of production line
 - \blacktriangleright expected 50% beginning of 2023, the rest sometime(?) in 2024
- **Clear fibres:** \blacklozenge
 - Mitsubishi ESKA SK-40 as used before, no tests done
 - ♦ cost even lower than foreseen

T1.2 Absorber choice

Dimensions:

- external diameter 2mm (+- 0.050 mm) \leftarrow From SiPM dimensions
- \bullet internal diameter 1.1 mm (-0 + 0.1 mm) \leftarrow From Fiber dimensions
- length 2.5 m \leftarrow From containment studies

Material: **+**

 \bullet stainless steel 304 \leftarrow Cheaper than Brass, comparable performance

T1.2 Absorber Choice

G. Gaudio – Dual-readout meeting – 07.09.2022

Capillary samples – swiss producer

G. Gaudio – Dual-readout meeting – 07.09.2022

Capillary samples - Chinese producer

Other samples are under evaluation

T1.3 and T1.5 PMT

- Reuse of Hamamatsu R8900 and R8900-100
 - out of production
- New PMT R11265-200 and R11265-203
 - from data sheet very similar to previous PMT

- Under validation at Como
 - linearity (vs HV and vs light attenuation)
 - spatial uniformity

G. Gaudio – Dual-readout meeting – 07.09.2022

1 Module: $1 \times 5 \,\mathrm{dMMs}$ ~ 13 × 13 cm²

dMiniModule:

64 x 16 channels 1024 in total

512 S + 512 C

- C and S fibres are positioned per raw
- Grouping to interface to PMTs

Scintillation fibers G. Gaudio – Dual-readout meeting – 07.09.2022

• Fibres separation at the rear of the calorimeter

Pictures from previous prototypes to illustrate fibres disposal and grouping

Pictures from previous prototypes to illustrate fibres disposal and grouping

In EM prototype 256 C + 256 S fibres, I PMT per Tower

G. Gaudio – Dual-readout meeting – 07.09.2022

In RD52 prototype 525 fibres per each PMT, either C or S

Each MM (64 x 16 channels) 1024 fibres in total 512 S + 512 C has an interfacing tool (interfacing to a PMT C and to a PMT S) which will stay in the shadow of the minimodule

- it wasn't like that in 2020 EM Module, due to smaller towers
- There is enough space in the new MM geometry •

G. Gaudio – Dual-readout meeting – 07.09.2022

Mechanics for PMTs holder based on previous experience in RD52 and RD_FCC prototypes

Backup

G. Gaudio – Dual-readout meeting – 07.09.2022

Lab for testing and production

Assembling tooling

- Movable shoulder to define module dimensions
- Reference plate for tube staggering

G. Gaudio - Dual-readout meeting - 07.09.2022

Grinding L-shape support, worked with high precision

Tube gluing

Positioning of the tube layer on the previous one Vacuum release and tool released Detaching the plates with double-sided tapes

Module closure

- Repeat until complete the module
 - only 6 layers done for this tests
- Add weight on the top
- Leave for glue curing

- Easy and fast procedure
- Scalable to 2.5 m long

edure long

Lab for testing and production

Tube Testing Station

G. Gaudio - Dual-readout meeting - 07.09.2022

Assembly system

Tube preparation and handling

Tube are prepared on support tool, and aligned

Plastic plates prepared with double-sided scotch tape: decouple tube in the vacuum system

G. Gaudio – Dual-readout meeting – 07.09.2022

Tube handling and gluing

Lab for testing and production

G. Gaudio - Dual-readout meeting - 07.09.2022

Istituto Nazionale di Fisica Nucleare

