SIDDHARTA-2 status report

Catalina Curceanu, INFN – LNF on behalf of the SIDDHARTA-2 Collaboration

Kaonic atom Formation

SIDDHARTA-2 Collaboration

Silicon Drift Detectors for Hadronic Atom Research by Timing Application

LNF-INFN, Frascati, Italy

SMI-ÖAW, Vienna, Austria

Politecnico di Milano, Italy

IFIN --HH, Bucharest, Romania

TUM, Munich, Germany

RIKEN, Japan

Univ. Tokyo, Japan

Victoria Univ., Canada

Univ. Zagreb, Croatia

Univ. Jagiellonian Krakow, Poland

ELPH, Tohoku University

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

SIDDHARTA-2 Scientific Goal

To perform the *first measurement ever of kaonic deuterium X-ray* transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction.

SIDDHARTA-2 Scientific Goals

To perform the *first measurement ever of kaonic deuterium X-ray* transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction.

Analysis of the combined measurements of kaonic deuterium and kaonic hydrogen

 $\left(\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s}\right) = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}p}\left(1 - 2\alpha\mu_{c}(\ln\alpha - 1)a_{K^{-}p}\right)$

(μ_c reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

completely solve Isospin-dependent K-N scattering length Other kaonic atoms measurements: QCD; QED

Kaonic atoms – scattering amplitudes

A. Cieplý, M. Mai, Ulf-G. Meißner, J. Smejkal, https://arxiv.org/abs/1603.02531v2

SIDDHARTA-2 kaonic deuterium at DAΦNE

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

Publications since last SC

- 1. D. Sirghi et al., New measurements of kaonic helium-4 L-series X-rays yields in gas with the SIDDHARTINO setup, Nucl. Phys. A, Available online 31 October 2022, 122567
- 2. M. Miliucci et al., Towards the first kaonic deuterium measurement with the SIDDHARTA-2 experiment at DAFNE, Nuovo Cim.C 45 (2022) 6, 205 – best talk SIF 2021
- 3. A. Khreptak et al., Studies of the linearity and stability of Silicon Drift Detectors for kaonic atoms X-ray spectroscopy, accepted in Acta Physica Polonica A
- 4. M. Miliucci et al., Large area silicon drift detectors system for high precision timed x-ray spectroscopy, Measur.Sci.Tech. 33 (2022) 9, 095502
- 5. F. Sgaramella et al., Measurements of kaonic atoms transitions from solid targets by SIDDHARTA-2, ready to be submitted to EPJ A
- M. Miliucci et al., High precision Kaonic Deuterium measurement at the DAΦNE collider: the SIDDHARTA-2 experiment and the SIDDHARTINO run, Rev.Mex.Fis.Suppl. 3 (2022) 3, 0308081
- 7. F. Sirghi et al., Status and perspectives for low energy kaon-nucleon interaction studies at $DA\Phi$ \Phi Φ NE: from SIDDHARTA to SIDDHARTA-2, PoS PANIC2021 (2022) 200

Publications since last SC

- 8. A. Scordo et al., HAPG mosaic crystal Von Hamos spectrometer for high precision exotic atoms spectroscopy, PoS PANIC2021 (2022) 195
- 9. M. Skurzok et al., Investigation of the low-energy K–K⁻-K– hadronic interactions with light nuclei by AMADEUS, Int.J.Mod.Phys.E 31 (2022) 08, 2240001
- 10. F. Sgaramella et al., The SIDDHARTA-2 calibration method for high precision kaonic atoms x-ray spectroscopy measurements, Phys.Scripta 97 (2022) 11, 114002
- F. Napolitano et al., Kaonic atoms at the DAΦNE collider with the SIDDHARTA-2 experiment, Phys.Scripta 97 (2022) 8, 084006

+ other 4 articles submitted awaiting reviews and other 4 articles in preparation

Marlene Tuechler: Best Poster award

29 August 2022 to 2 September 2022 Europe/Vienna timezone

Entaryour coarch term

Overview

- Scientific Programme
- Call for Abstracts
- Timetable
- Welcome event
- Public Lecture
- Confirmed Speakers
- Poster prize
- Registration
- Conference fee
- **Contribution List**
- Book of Abstracts

Poster prize

SSP2022 is a conference supported by NuPECC who granted funding for two poster prizes awarded on Thursday (01.09.2022) after the morning session.

The winners are:

Alexander Boeschoten (Van Swinderen Institute, Groningen) for the poster titled: Understanding of Systematic Effects in eEDM Searches with diatomic molecules

and

Marlene Tüchler (Stefan Meyer Institute, Vienna) for the poster titled: Kaonic Atom X-Ray Spectrocopy with the SIDDHARTA-2 Experiment

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

63rd LNF Scientific Committee Meeting

SIDDHARTA-2 is presently collecting data with a helium target to commission the detector and the aim is to collect 100 pb⁻¹ with the deuterium target in 2022 before the summer stop. At least 500 pb⁻¹ (up to a maximum of 700 pb⁻¹) are required in 2023 to complete the physics programme with the deuterium target. Considering the running time (at least 200 days) necessary to achieve the above targets at the present luminosity production rate, the proposed actions and interventions are a worthwhile investment.

63rd LNF Scientific Committee Meeting

Recommendations DAPNE - BTF/LINAC - SIDDHARTA-2:

- DAΦNE should aim at reaching 100 pb⁻¹ before the summer closure.
 During 2023 additional 700 pb⁻¹ should be delivered.
- To this end, the SC supports an immediate action to improve the DAΦNE luminosity and backgrounds, as proposed by the DAΦNE team. Ideally this should take place during the helium run of SIDDHARTA-2, in order to then profit from the maximum luminosity for the K-d run.

Summary of runs since last SC:

- Finalization optimization run with Kaonic Helium: end of May 2022 – total integrated luminosity 45 pb⁻¹
- Run with kaonic deuterium: 2 14 June 2022: about 35 pb⁻¹
- Post run calibration with kaonic helium: about 5 pb⁻¹

Integrated luminosity summary

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes highlights
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

RTICLE IN PRES

Available online at www.sciencedirect.com

[m1+; v1.358] P.1 (1-10)

Nuclear Physics A ••• (••••) ••••••

www.elsevier.com/locate/nuclphysa

New measurements of kaonic helium-4 L-series X-rays yields in gas with the SIDDHARTINO setup

D.L. Sirghi ^{a,b,c,*}, H. Shi ^d, C. Guaraldo ^a, F. Sgaramella ^{a,**}, C. Amsler ^d, M. Bazzi ^a, D. Bosnar ^e, A.M. Bragadireanu ^c, M. Carminati ^{f,g},
M. Cargnelli ^d, A. Clozza ^a, G. Deda ^{f,g}, L. De Paolis ^a, R. Del Grande ^{a,h}, L. Fabbietti ^h, C. Fiorini ^{f,g}, M. Iliescu ^a, M. Iwasaki ⁱ, J. Marton ^d,
M. Miliucci ^a, P. Moskal ^j, F. Napolitano ^a, S. Niedzwiecki ^j, H. Ohnishi ^k, K. Piscicchia ^{b,a}, Y. Sada ^k, A. Scordo ^a, M. Silarski ^j, F. Sirghi ^{a,c},
M. Skurzok ^j, A. Spallone ^a, K. Toho ^k, M. Tüchler ^{d,j}, O. Vazquez Doce ^a,

J. Zmeskal^d, C. Yoshida^k, C. Curceanu^a

. 2. X-ray kaonic helium-4 spectra measured by SIDDHARTINO for: (a) 0.82 g/l target gas density; (b) 1.90 g/l target gas density. The kaonic helium-4 peaks L_{α} , L_{β} and L_{γ} are shown. Several kaonic atom X-ray lines produced in the Kapton foils are also shown: Kaonic Carbon $6 \rightarrow 5$, Kaonic Oxygen $7 \rightarrow 6$, Kaonic Nitrogen $6 \rightarrow 5$, Kaonic Carbon $7 \rightarrow 5$, Kaonic Oxigen $6 \rightarrow 5$, Kaonic Carbon $5 \rightarrow 4$ transitions. The solid line shows the fit function of the spectrum. The blue line shows the L series L_{α} , L_{β} and L_{γ} kaonic helium-4 components. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. The L_{α} X-ray yield of K^{-4} He as function of the target density from all gaseous target measurements: this work (filled dots) and SIDDHARTA [16] (hollow squares).

SIDDHARTA-2 Data Analysis Report

- Silicon Drift Detectors calibration spectra analysis
- > Apply trigger, veto, cross talk -> clean spectrum!
- Kaonic deuterium preliminary analysis
- SIDDHARTA-2 kaonic helium run results
- Surprise: Kaonic helium first measurement of the M (n=3) lines (and coincidence with L-lines)

SDD Calibration: 384 SDDs (6xSIDDHARTINO)

SDD Calibration

F Sgaramella et al 2022 Phys. Scr. 97 114002

SDD Calibration - Stability

SIDDHARTA-2 Kaonic deuterium SDDs energy spectrum

SIDDHARTA-2 Veto-1 system

Veto-1 system installed around the vacuum chamber

M. Bazzi et al, 2013 *JINST* 8 T11003

Veto 1 TDC mean time spectrum

SIDDHARTA-2 Veto-2 system

Working principle of veto-2 system

Correlation between veto2 and SDD channels

sdd

veto2_ch

Kaon charge identification

SIDDHARTA-2 Kaonic deuterium background reduction

SIDDHARTA-2 Kaonic deuterium

35pb⁻¹ SIDDHARTA-2 Kaonic deuterium MCarlo

SIDDHARTA-2 outcomes: Kaonic ⁴He Run + Other kaonic atoms from solid targets
SIDDHARTA-2 and SIDDHARTINO: sub-1 eV precision! -> article

			<u> </u>	χ ²	/ndf = 1.5		
		🛶 Data — fit	Ldt = 76 pt	0^{-1}	Transition	Energy	(eV)
		Bulu	J - at ropa		K ⁴ He $(3\rightarrow 2)$	6461.4 ± 0.8 (sta	$(t) \pm 2.0 (syst)$
•		K4H0 3->			$K^{-}C (6 \rightarrow 5)$	5541.7 ± 3.1 (sta	$at) \pm 2.0 (syst)$
2		R He J-2			$K^-C (7 \rightarrow 5)$	8890 ± 13 (stat	$\pm 2.0 \; ({ m syst})$
5	2500	— "			K^-C (5 \rightarrow 4)	10216.6 ± 1.8 (st	at) \pm 3.0 (syst)
5	-	l 1			K^-C (6 \rightarrow 4)	15760.3 ± 4.7 (sta	$(t) \pm 12.0 (syst)$
8					K [−] O (7→6)	6016 ± 60 (stat	$() \pm 2.0 \text{ (syst)}$
	2000 —	-		KAI 8->7	$K^{-}O$ (6 \rightarrow 5)	$9968.1 \pm 6.9 \; ({ m sta}$	$(t) \pm 2.0 (syst)$
					K^-N (6 \rightarrow 5)	7577 ± 17 (stat	$() \pm 2.0 \text{ (syst)}$
	-				K^-N (5 \rightarrow 4)	$14010.6 \pm 8.2 \text{ (st}$	at) \pm 9.0 (syst)
	1500	_ /		KO 6->5	$K^{-}Al (8 \rightarrow 7)$	$10441.0 \pm 8.5 \text{ (st}$	at) \pm 3.0 (syst)
					K ⁻ Al $(7 \rightarrow 6)$	$16083.4 \pm 3.8 \; ({\rm sta}$	$(t) \pm 12.0 (syst)$
			K⁴He	5->2 KC 5->4			
	_						
	1000		KC 7->5				
		KU 7->6	K ⁴ He 4-Þ2				
	500 vc	6.5	R		l high	KN 5->4	KAI 7->6
		κΝ θ	6->5		L-IIIgII	A K	C 6->4
	****	man have been been and		المعجب المحجود		man and the second	
	٥Ľ						
	U	6000	8000	10000	12000	14000	16000
							E [eV]

SIDDHARTA-2 and SIDDHARTINO

Kaonic atoms from soldid targets -> article

SIDDHARTA-2 Kaonic ⁴He SURPRISE First measurement M-line transitions – article

counts / 40 eV

SIDDHARTA-2 Kaonic ⁴He coincidence between L and M transitions

S/B improved factor > 30

Feasibility test for future kaonic atom measurements (kaonic ⁴He fundamental level) - article

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

SIDDHARTA-2 setup

Optimize the SIDDHARTA-2 setup

(Sept. 2022 – February 2023)

 UHMWPE – new entrance windows material for target super-strong form of polyethylene, would eliminate both Nitrogen and Oxygen contamination

- ✓ Reinforced shielding around the setup
- ✓ Add new vero system (veto3)
- ✓ Work with DAFNE to reduce background

Improve the lateral shielding around the vacuum chamber

Optimize the SIDDHARTA-2 setup

DAΦNE luminosity detector foot-print replaced by special re-design shielding

Optimize the SIDDHARTA-2 setup

VETO system adds – VETO3 below the setup

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

Take advantage of "free space" in DAΦNE

Present status

First HPGe spectrum (we plan a technical paper)

en Entries Mean 415.1 Std Dev 249.9

energy (keV)

Measurements – 2 days data analyses ongoing (kaonic lead – see last SC)

sum

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: Exploiting DAFNE

DA Φ NE delivers almost 4π K⁻

We want to exploit this uniqe beam as much as possible to perform important physics measurements

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: physics goals and motivations

E. Friedman et al. / Nuclear Physics A579 (1994) 518-538

Compliation of K atomic data													
Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)								
He	3→2	-0.04 ± 0.03	~	<u> </u>									
		-0.035 ± 0.012	0.03 ± 0.03	_	_								
Li	3→2	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	-								
Be	3→2	-0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02								
¹⁰ B	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	_	-								
¹¹ B	$3 \rightarrow 2$	-0.167 ± 0.035	0.700 ± 0.080	-	-								
С	$3 \rightarrow 2$	-0.590 ± 0.080	1.730 ± 0.150	0.07 ± 0.013	0.99±0.20								
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-									
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03								
Al	4 → 3	-0.130 ± 0.050	0.490 ± 0.160	-	_								
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04								
Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	_	_								
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06								
P	4 → 3	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30								
S	4 → 3	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36								
		-0.43 ± 0.12	2.310 ± 0.170	-	-								
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5								

Table 1

Examples : $KC(3\rightarrow 2), KAl(3\rightarrow 2), KS(4\rightarrow 3)$: with precisions < 20 eV (ϵ) and <40 eV (Γ)

Element	Transition	E (keV)
K ¹² C	3>2	63
K ¹² C	4>2	85
K ¹² C	5>2	95
K ¹² C	6>2	101
K ¹² C	7>2	104
K ¹² C	4>3	22
K ¹² C	5>3	32
K ¹² C	6>3	38
K ¹² C	7>3	41
Element	Transition	E (keV)
K ³² S	1->2	
	423	161
	4>3	161
K ³² S	5>4	161 74
K ³² S K ³² S	5>4 6>4	161 74 115
K ³² S K ³² S K ³² S	5>4 6>4 7>4	161 74 115 139
K ³² S K ³² S K ³² S K ³² S	5>4 6>4 7>4 8>4	161 74 115 139 155
K ³² S K ³² S K ³² S K ³² S K ³² S	5>4 6>4 7>4 8>4 9>4	161 74 115 139 155 166
K ³² S K ³² S K ³² S K ³² S K ³² S K ³² S	5>4 6>4 7>4 8>4 9>4 10>4	161 74 115 139 155 166 174

Element	Transition	E (keV)
K ²⁷ AI	3>2	302
K ²⁷ AI	4>3	106
K ²⁷ AI	5>3	155
K ²⁷ AI	6>3	181
K ²⁷ AI	7>3	197
K ²⁷ AI	8>3	208
K ²⁷ AI	5>4	49
K ²⁷ AI	6>4	76
K ²⁷ AI	7>4	91
K ²⁷ AI	8>4	102
K ²⁷ AI	9>4	109
K ²⁷ AI	10>4	114

Measurements of several parallel transitions to provide new inputs for cascade calculations & QCD & QED

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: First ever tests of a CZT prototype on a collider 3 days in June

CdZnTe 1mm Al Entrance Window

SIDDHARTA-2 Luminosity Monitor

Goal: background and resolution assessment in machine environment

22/06/2022:

First prototype installed in DAΦNE with the help of Palermo Team

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: Main Results and achievements

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: Testing background rejection

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: First 3 papers

Springer Nature 2021 IATEX template

New opportunities for kaonic atoms measurements from CdZnTe detectors

L. Abbene ¹ , M. Bettelli ² , A. Buttacavoli ¹ , F. Principato ¹ , A.
Zappettini ² , C. Amsler ³ , M. Bazzi ⁴ , D. Bosnar ⁵ , M.
Bragadireanu ⁶ , M. Cargnelli ³ , M. Carminati ⁷ , A. Clozza ⁴ , G.
Deda ⁷ , L. De Paolis ⁴ , R. Del Grande ^{8,4} , L. Fabbietti ⁸ , C.
Fiorini ⁷ , I. Friščić ⁵ , C. Guaraldo ⁴ , M. Iliescu ⁴ , M.
Iwasaki ⁹ , A. Khreptak ⁴ , S. Manti ⁴ , J. Marton ³ , M.
Miliucci ⁴ , P. Moskal ^{10,11} , F. Napolitano ⁴ , S.
Niedźwiecki ^{10,11} , H. Ohnishi ¹² , K. Piscicchia ^{13,4} , Y.
Sada ¹² , F. Sgaramella ⁴ , H. Shi ³ , M. Silarski ^{10,11} , D. L.
Sirghi ^{4,13,6} , F. Sirghi ^{4,6} , M. Skurzok ^{10,11} , A. Spallone ⁴ , K.
Toho ¹² , M. Tüchler ^{3,14} , O. Vazquez Doce ⁴ , C. Yoshida ¹² , J.
Zmeskal ³ , A. Scordo ^{4*} and C. Curceanu ⁴

Submitted to EPJ_ST

sensors

1 Article

7

8

9

10

 $\begin{array}{c} 001 \\ 002 \end{array}$

 $\begin{array}{r}
 003 \\
 004 \\
 005
 \end{array}$

006 007

008

009

 $\begin{array}{c} 010\\011 \end{array}$

012

013

014

015

016

017

018

019

020

021

Potentialities of a digital quasi-hemispherical CdZnTe detector for kaonic atoms X-ray spectroscopy.

Antonino Buttacavoli¹, Fabio Principato¹, Gaetano Gerardi¹, Manuele Bettelli², Andrea
 Zappettini², Alessandro Scordo³, Catalina Curceanu³, and Leonardo Abbene¹/₂⁻
 ¹ Department of Physics and Chemistry (DiFC) - Emilio Segrè, University of Palermo, Viale delle

- ¹ Department of <u>Physics</u> and <u>Chemistry</u> (<u>DiFC</u>) Emilio Segrè, University of Palermo, Viale delle Scienze, Edificio 18, Palermo, 90128, <u>Italy</u>; antonino.buttacavoli@unipa.it (A.B.); fabio.principato@unipa.it (F.P.); donato.cascio@unipa.it (D.C.); giuseppe.raso@unipa.it (G.R.); gaetano.gerardi@unipa.it (G.G.);
- ² IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100, Italy; manuele.bettelli@imem.cnr.it (M.B.); andrea.zappettini@imem.cnr.it (A.Z.);

11 ³ INFN-LNF, Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Frascati,

12 00044 Roma, Italy 13 * Correspondence

- * Correspondence: leonardo.abbene@unipa.it
- 14 Received: date; Accepted: date; Published: date

In preparation

Contents

- Publications since last SC
- 63rd SciCom recommendations
- SIDDHARTINO/SIDDHARTA-2 runs outcomes
- Activities towards SIDDHARTA-2 optimization and restart of the run (end Feb 2023)
- HPGe & CdZnTe Detectors: test runs for light and heavy kaonic atoms (kaon mass)
- Future plans

Project timeline – future plan

SIDDHARTA-2 kaonic deuterium at DAΦNE

61

Precision and significance

DF

Precision on shift

Conclusions

- The first SIDDHARTA-2 run has been concluded successfully: optimization of setup; run with Khe; technical run with Kd
- In particular we: we performed the most precise KHe measurement in gas and the measurement of yields at lowest density; first M-lines observation ever; kaonic atoms from solid targets
- 11 articles were published/submitted since the last Sci Com important scientific outcome, 4 are in preparation
- We are ready and very motivated to start the SIDDHARTA-2 (forst) Kd measurement as soon as possible
- We put forward proposal for solid targets measurements with SIDDHARTA-2 setup for 100-150 pb⁻¹ after Kd run - @SC62 as well as future measurements proposal

SDD 1mm development - Solid targets

Kaonic Atoms to Investigate Global Symmetry Breaking Symmetry 12 (2020) 4, 547

Part. and Nuclear physics QCD @ low-energy limit Chiral symmetry, Lattice The modern era of light kaonic atom experiments Rev.Mod.Phys. 91 (2019) 2, 025006

Fundamental physics New Physics

Kaonic atoms Kaon-nuclei interactions (scattering and nuclear interactions)

On self-gravitating strange dark matter halos around galaxies Phys.Rev.D 102 (2020) 8, 083015

Dark Matter studies

The equation of state of dense matter: Stiff, soft, or both? Astron.Nachr. 340 (2019) 1-3, 189

> Astrophysics EOS Neutron Stars

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

EXtensive Kaonic Atoms research: from Lithium and Beryllium to Uranium

Gantt chart – possible implementation of the kaonic atoms measurements

Total integrated Luminosity: 200 + 400 (200) + 400 (200) + 400 pb⁻¹

	1 st year										2 nd year									3 rd year														
KH																																		
LHKA																																		
IMKA																																		
UHKA																																		

Preparation of the experiment Installation and commissioning Data taking

Part of the SIDDHARTA-2 collaboration Thank you!

Special thanks to the accelerator, research and technical divisions, and in particular to the DAPNE staff and to the LNF Director

In Conclusion, we propose to perform fundamental Physics at the strangeness frontier at DAΦNE studies: High Precision Kaonic Atoms Measurements on DAΦNE:

The strangeness Mendeleev table

We presented a program for performing unique measurements of kaonic atoms along the periodic table to contributing to understand physics going from the strong interaction (symmetry breaking) to neutron stars, and from Dark Matter to Physics Beyond Standard Model, setting LNF in forefront of these studied.

A strong international community is putting forward this realistic and feasible programme in particular in terms of the required integrated , that can be delivered within the upcoming 3-5 years, with support from National and European projects.

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: DAQ logic and synchronization with SIDDHARTA-2 LM

2 Digitizers CAEN DT5724-16 used to acquire both CZT & TAC events

Time correlation with a Clock Distributor (custom from Palermo Team)

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: Main Results and achievements

Expected signal sensitivity for SIDDHARTA-2 Deuterium Measurement

Only K_alpha

K_alpha + K_beta + K_high

Intermediate-mass kaonic atoms' spectroscopy with CZT detectors: 2023 plans

Fast, handy and significant physics measurements with very low costs and human efforts

A new run is foreseen in 2023 to measure intermediatemass kaonic atoms' transitions

Improvements:

Detecting surface : $1 \text{ cm}^2 \rightarrow 10 \text{ cm}^2$ Degrader and geometry tuned with GEANT4 MC Mechanical setup to maintain the alignement with the LM

Operation plan for 2022 (in agreement with LNF Management)

7 April Started collision for SIDDHARTA-2 RUN

2 June Collider mode SIDDHARTA-2 RUN for Kd

11 July END of collider mode 7 April – 27 May KHe runs Integrated luminosity KHe: 45 pb-1

Simultaneously we carried out further debugging of the trigger and luminometer, degrader optimization Veto systems calibration

2 June – 6 July First Kaonic deuterium RUN – full setup Integrated luminosity (Deuterium): 35 pb-1

7 July – 11 July KHe calibration run (~5 pb-1) Energy scan