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Machine Learning exotic hadrons
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Summary. — We show that a neural network trained with synthetic differential
intensities calculated with scattering length approximated amplitudes classifies the
Pc(4312)

+ signal as a virtual state located at 4th Riemann sheet with very high
certainty. This is in line with the results of other analyses but surpasses them by
providing a simultaneous evaluation of probabilities of competing scenarios, like e.g.
the interpretation as a bound state. Using the Shapley Additive Explanations we
identified the energy bins which are key for the physical interpretation.
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© Società Italiana di Fisica 1
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1. – Introduction

Since the observation of the first tetraquark candidate χc1(3872) at Belle [1], the
analalysis of the structure and production mechanisms of exotic hadrons has been at the
center of both experimental and theoretical effort of hadron physics community. The
Pc(4312)+ state observed in the Λ0

b → J/ψpK− decay at LHCb [2] as a peak in the J/ψp
invariant mass distribution drew a lot of attention. If confirmed as a resonance, Pc(4312)+

would necessairily consist of five valence quarks. The state’s proximity to the Σ+
c D

0

threshold pointed towards hadronic molecule interpratation but other interpretations
followed. In [3] a bottom-up approach was taken, where a general analytical structure
of the unitary amplitude was exploited. The minimally biased model pointed towards
interpretation of the Pc(4312) as a virtual state. Here we also exploit the bottom-up
approach but rather than constraining the model parameters with experimental, data
we use an artificial neural network to map the structure of the amplitude poles onto
physically interpretable classes.

2. – Physics basis

We consider a two channel model with channels J/ψp and Σ+
c D

0
labelled 1 and 2,

respectively. The starting point of the model construction is the coupled channel form
of the inverse amplitude which reads

(1) T−1
ij = Mij − ikiδij ,

where ki are channel momenta and Mij is a matrix which was shown in [4] to be singular-
ity free in the energy region close to threshold, and thus can be Taylor expanded there.
Furher we use the first term of this expansion. i.e. a constant matrix Mij . The channel
momenta compatible with this approximation are defined as ki =

√
s− si, where

(2) s1 = (mp +mJ/ψ)2 and s2 = (mΣ+
c

+mD̄0)2

are threshold energies in respective channels. The explicit form of the elastic amplitude
for the pJ/ψ channel reads

(3) T11 =
M22 − ik2

(M11 − ik1)(M22 − ik2) −M2
12

.

where M11, M22 and M12 are model parameters. It is assumed that the state under
study has a well definded spin and a contribution of other partial waves boils down
to the incoherently added background to be parametrized as a first order polynomial
in energy squared B(s) = b0 + b1s. In this study we are going to model the J/ψp
invariant mass distribution observed in the Λ0

b → J/ψpK− decay. The Λ0
b decay vertex

function similarly to the backgound can be parametrized as the first degree polynomial
P1(s) = p0 + p1s. So, the differential energy-dependent intensity reads

(4)
dN

d
√
s

= ρ(s)
[
|P1(s)T11(s)|2 +B(s)

]
,
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Fig. 1. – Pole structure in the complex k2-plane. Poles marked with circles evolve to bound
states while those marked with diamonds to virtual states with decreasing inter-channel coupling
(figure adopted from [6]).

with ρ(s) being the phase space factor. In principle, Eq. 4 contains also the term describ-

ing a transition from Σ+
c D

0
to J/ψp channel. Here, however, we are mostly concerned

with the pole structure of the amplitude on the 4-sheeted Riemann surface, which for
the T21 is the same as for T11. So, the effect of T12 can be absorbed into P1(s) and
B(s) functions (see [3] for detailed discussion). To account for the finite mass resolution
of the experiment, Eq. 4 was convolved with the gaussian with mass dependent width,
see Supplementary Material of [5] for details. By construction, the amplitude of Eq. (3)
has 4 poles but only 2 of them, being complex conjugate, lie close to the physical region
on either 2-nd or 4-th Riemann sheet and are relevant for the shape of the observed
signal. With decreasing M12, i.e. when two channels decouple, these poles approach the
imaginary k2-axis with positive value of Imk2 for the bound state and nagative one for
the virtual state. In the scattering length approximation this sign is controlled by the
sign of M22 parameter (positive for the virtual state, negative for the bound state). Thus
our classification problem consists in mapping the intensity shape into 4 combinations
of bound vs. virtual states on either 2-nd or 4-th sheet. In what follows we label these
classes b|2, b|4, v|2 and v|4, respectively.

3. – Neural network model

The intensity function of Eq. (4) depends on 7 parameters - M11, M22, M12, p0, p1,
b0 and b1. The training data set of 105 samples was produced by randomly sampling the
model parameters within suitably chosen intervals, see [6] for details on training data
generation and ANN architecture. The artificial neural network (ANN) classifier has
been trained by feeding model intensities split into 65 energy bins to the input layer and
matching them with respective class assignments using the categorical cross entropy as a
loss function. To make the ANN model more robust against experimental uncertainties,
some portion of the Gaussian noise was added to the simulated data. In Fig.2 we show
how the classification accuracy depends on the level of noise (5% noise was used in
actual prediction, which is our estimate of the evarage error percentage as releted to the
maximum intensity) as well as the model accuracy on the validation data set, which was
held out during training. Noteworthy, the accuracy exceeds 90% for all classes.
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Fig. 2. – ANN classification accuracy as a function of the noise level (upper panel) and model
accuracy on the validation data set (lower panel).

4. – Results

Here we discuss the results of the analysis applied to the J/ψp invariant mass distri-
bution weighted with cos θPc

i.e. the value of the cosine of the angle between final state
kaon and the J/ψ as measured in the P+

c rest frame. See [6] for results obtained for
other datasets. To obtain statistically significant predictions from the ANN classifica-
tion model a distribution of class assignments has been produced in two ways. First, a
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Fig. 3. – Histograms reflecting the class assignment probabilities obtained with dropout and
bootstrap methods.

bootstrap method was used [7] where a set of 104 examples was produced by sampling
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with Gaussian distribution around experimental central values of intensity with standard
deviation equal to experimental error. This sample was fed to the trained model and
produced the 4-class distribution. Secondly, a dropout method was used [8], where the
Gaussian noise was simulated by randomly switching-off some weights in the trained
model. Histograms of class assignment probabilities based on two methods are shown
in Fig. 3. Both of them indicate that v|4, i.e. a virtual state corresponding to the pole
on 4-th Riemann sheet is by far a most probable class assignment. Finally the SHapley
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Fig. 4. – SHAP values for four possible class assignments and energy bins around Pc(4312)
maximum.

Additive exPlanations (SHAP) [9] were used to identify energy bins which are most im-
portant for the ANN model to choose a particular class. As shown in Fig. 4 the energy

bins close to the Σ+
c D

0
threshold are decisive for v|4 class assignment, which provides

an ex post justification of the scattering length approximation of the amplitude. It is
worth mentioning that this analysis can be extended in several directions like taking into
account the interference with the background, microscopically motivated description of
the production mechanism or reducing the bias related to limited intervals of parameters
used for the training dataset generation.
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