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Dispersive calculation for N∗(1520) transition form factors at low
energies
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den

Summary. — The transition form factors of N∗(1520) have been formulated
and computed at low energies (|q2| < 1GeV2) using dispersion theory for the
first time. Utilizing hadronic data from N∗(1520) → Nπ, N∗(1520) → ∆π, and
N∗(1520) → Nρ processes, we have calculated both space-like and time-like transi-
tion form factors. Our results demonstrate agreement with the existing space-like
form factor data. The predicted time-like form factors can be experimentally tested
by the HADES experiment.

1. – Introduction

Electromagnetic form factors (FFs) and transition form factors (TFFs) are important
to understand the electromagnetic structure of nucleons. At high energies where pertur-
bative QCD applies due to asymptotic freedom, the minimal quark content is prevalent
[1, 2] and the asymptotic behavior can be estimated using, for example, quark counting
rules. At low energies (large distances), the structure of hadrons is sensitive to the ex-
citations of pions, because the pions are extraordinarily light. Their small masses are
related to the spontaneous breaking of chiral symmetry, which gives rise to the pions as
Goldstone bosons. It is the intermediate energy range that remains the least understood
part. An interesting and deeper question to ask is: how should one understand quan-
titatively and model-independently the FFs and TFFs from first principles in the
intermediate energy range where the perturbative QCD fails and other hadronic degrees
of freedom are excited (e.g ∆, ρ meson)? To answer this question, dispersion theory
together with chiral perturbation theory (ChPT) can be applied. The purpose of this
project and related ones [3, 4, 5] is to improve on the description of these long-range
pionic effects as one part of the structure information of the composite hadronic states.
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While studying in [3, 4, 5] ground-state baryons we will address here the lowest-lying
excitation of the nucleon with negative parity, the N∗(1520).

2. – Dispersion relations

The N∗(1520) has iso-spin I = 1/2 and JP = 3/2− [6]. The electromagnetic matrix
element is given by

(1) ⟨N |jµ|N∗⟩ = e ūN (pN ) Γµν(q)u
ν
N∗(pN∗)

with

Γµν(q) := i
(
γµqν − /qg

µν
)
mNF1(q

2) + σµαqαq
νF2(q

2) + i
(
qµqν − q2gµν

)
F3(q

2) ,(2)

where qµ := pµN∗ − pµN and Fi are TFFs with i = 1, 2, 3. The TFFs Fi are constructed
based on the Bardeen-Tung-Tarrach construction (BTT construction) [7, 8]. Therefore
they are constraint-free and qualify for a dispersive representation. Diagramatically, they
are represented by the grey blob in Fig. 1.

If one writes the S-matrix (schematically) as S = 1+ iT with the matrix T including
the true scattering amplitudes, then the unitarity of S leads to the optical theorem here
applied to nucleon TFFs,

ImTγ∗→N∗N̄ ∼
∑
i

Tγ∗→i

(
T †)

i→N∗N̄
(3)

where the intermediate states i covering 2π, 3π, 4π, . . . , KK̄, KK̄π, . . . , NN̄ , . . . . From
the S-matrix point of view, the importance of intermediate states is ordered by their
threshold. At low energies, the most important state is 2π. We restrict ourselves to the
iso-vector FFs and |q2| < 1GeV2 thus the 3π state will not be considered. For more than
3 pions, the Goldstone theorem requires that the couplings of pion fields are suppressed
by the derivative couplings which pushes their importance to higher energies (q2 > m2

ρ).
Note that the sum is restricted to asymptotic states and hadronic resonances do not
appear in the intermediate states but rather phase shifts. From a phenomenological point
of view, the 2π state includes the ρ meson in the phase shifts. We further approximate
the BM blob in Fig. 1, which contains baryonic and mesonic interaction, by including
nucleon and the ∆ in the cross-channels. The ∆ has been shown to be important, both
phenomenologically and also in large-Nc QCD where ∆ becomes even degenerate with
the nucleon [3, 4].

N∗

γ∗

N

≈

N∗

BM Fv γ∗

N

+ ... ≈

N∗

N

ππ Fv γ∗N/∆ + ...

Fig. 1.: Dispersive machinery for the TFFs at low energy. Dashed lines are pions. The
BM blob stands for Baryon and Meson interaction.
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The dispersion relations are formulated for the constraint-free TFFs :

(4) Fi(q
2) =

1

12π

∞∫
4m2

π

ds

π

Ti(s) p
3
cm(s)F

∗
v (s)

s1/2 (s− q2 − iϵ)
+ F anom

i (q2) + . . .

where Ti(s) ∼
〈
2π

∣∣N∗N̄
〉
represents the hadronic p-wave amplitudes. Fv(s) is the pion

vector form factor. The contribution F anom
i (q2) on the right-hand side of Eq. (4) comes

from the anomalous cut in the complex plane. The details of the anomalous cut can be
found in [5]. Using the Muskhelishvili-Omnès framework Ti(s) is calculated dispersively
as

Ti(s) = Ki(s) + Ω(s)Pi + T anom
i (s) + Ω(s) s

∞∫
4m2

π

ds′

π

Ki(s
′) sin δ(s′)

|Ω(s′)| (s′ − s− iϵ) s′
,(5)

where Ti(s) is decomposed into the left-hand cut Ki(s) and the rest contains the right-
hand cuts. We obtain K from chiral perturbation theory together with effective La-
grangian containing N(1520)-N -π and N(1520)-∆-π interaction. Pi are subtraction con-
stants that physically parametrize the high energy contributions that are not explicitly
covered by the dispersive framework. The subtraction constants therefore are fixed to
match N∗ → Nρ decay widths [6].

3. – Results (preliminary) and outlook

We define the isovector form factors as F v
i = 1

2 (F
p
i − Fn

i ). The proton F p
i (Q

2) and
neutron Fn

i (Q
2) in the space-like region are shown in Fig. 2 where one can see that

F p
i (Q

2) ≈ −Fn
i (Q

2) for i = 1, 3 in the low energy region, meaning that the N∗(1520)
is isovector dominated for i = 1, 3. Our preliminary results for the space-like FFs are
shown in Fig. 3 where one sees a nice agreement with the iso-vector TFF estimates (red
curve). The time-like form factors are shown in Fig. 4. The experimentally accessible
region is shaded in blue which one can probe by measuring N∗(1520) → Nl+l−, l = e, µ.
The differential Dalitz decay is predicted for electrons and muons, respectively, in Fig. 5.
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Fig. 2.: Orange: Lisbon parametrization [9] for proton, blue: MAID parametrization for
neutron [10, 11]. Green and black data points are proton Jlab data [12, 13, 14]. Data at
Q2 = 0 are taken from the PDG [6].

For the iso-vector dominated N∗(1520) resonance, the TFFs are closely related to the
N∗ → N2π decays. Having fixed all the parameters using the hadronic data N∗(1520) →
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Fig. 3.: Red: parametrization for isovector TFFs using Lisbon parametrization. for
proton, the MAID parametrization for neutron. Blue: this work (preliminary). Full
lines: real part, dashed lines: imaginary part.
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Fig. 4.: Time-like transition FFs (preliminary). Full lines: real part, dashed lines: imagi-
nary part. The experimentally accessible region given by q2 ∈ [4m2

e, (mN −mN∗)2] which
corresponds to the shaded area.
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Fig. 5.: Predictions for electronic and muonic differential decay width (preliminary)

Nπ,∆π,Nρ in our framework, we make predictions for the hadronic Dalitz decay N∗ →
N2π using the dispersion relations of Eq. (5). In Fig. 6, the double differential Dalitz
plot is shown. Three resonances can be seen in the Dalitz plot: ∆0, ∆+, and ρ meson.
Our prediction for the TFFs and the hadronic Dalitz decay can be tested by the HADES
experiment in the future. More accurate experimental input forN∗(1520) → Nρ,Nπ,∆π
decays and better measurement on the neutron TFFs in the low Q2 region will help to
reduce our theoretical uncertainty.
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Fig. 6.: Dalitz plot dΓ
dm2(nπ0)dm2(π+π0) for N∗(1520) → nπ+π0 (preliminary)
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