Molecular states of $D^*D^*\bar{K}^*$ and $B^*B^*K^*$ nature

N. IKENO⁽¹), M. BAYAR⁽²), L. ROCA⁽³), and E. OSET⁽⁴)

- (1) *Department of Agricultural, Life and Environmental Sciences, Tottori University, Tottori 680-8551, Japan*
- (2) *Department of Physics, Kocaeli University, 41380, Izmit, Turkey*
- (3) *Departamento de F´ısica, Universidad de Murcia, E-30100 Murcia, Spain*
- ⁽⁴) Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia CSIC, *Institutos de Investigaci´on de Paterna, Aptdo. 22085, 46071 Valencia, Spain*

Summary. — We report the theoretical study of the three-body system composed of $D^*D^*\tilde{K}^*$ and $B^*B^*K^*$. We study the interaction of two D^* (or two \bar{B}^*) and one \bar{K}^* by using the fixed center approximation to the Faddeev equations to search for bound states of the three-body system. Since the *D [∗]D ∗* interaction is attractive and the $D^*\bar{K}^*$ interaction is also attractive, we can expect to obtain the bound state of the three-body system $D^*D^*\bar{K}^*$ which is manifestly exotic state with *ccs* open quarks. Using the same analogy of the $D^*D^*\bar{K}^*$ system, we also study the $\bar{B}^*\bar{B}^*\bar{K}^*$ system containing the *bbs* open quarks since both interactions of \overline{B} ^{*} \overline{B} ^{*} and \overline{B} ^{*} \overline{K} ^{*} are attractive. We obtain the bound states of isospin $I = 1/2$, negative parity, and total spin $J = 0$, 1 and 2.

1. – Introduction

Many exotic mesons, which cannot be explained as the ordinary mesons of $q\bar{q}$, have been observed in the experiments. The recent experimental findings of the $X_0(2900)$ in the $D\overline{K}$ invariant mass and the $T_{cc}(3875)$ in the $DD\pi$ spectrum revealed clear exotic mesonic structures, since one has *cs* quarks in the first case and *cc* quarks in the second one. Based on the theoretical interpretations of the molecular picture, the *X*0(2900) and the $T_{cc}(3875)$ are identified as the $D^*\bar{K}^*$ and D^*D bound states, respectively.

In this article, we report the theoretical studies [1, 2] of the three-body systems $D^*D^*\bar{K}^*$ and $\bar{B}^*\bar{B}^*\bar{K}^*$, which are manifestly exotic bound states with *ccs* and *bbs* open quarks. The reason to choose the systems is that the D^*D^* and $\bar{B}^*\bar{B}^*$ interactions with $I(J^P) = 0(1^+)$ were found to bind in Refs. [3, 4], and the D^*K^* and $\bar{B}^*\bar{K}^*$ interactions were also found to be attractive in Refs. [5, 6]. Especially, the D^*K^* bound state with $J^P = 0⁺$ in Ref. [5] is identified as the *X*₀(2900). Therefore, these exotic three-body systems are expected to exist and we calculate the binding energy and width of the possible bound states.

 \circledcirc Società Italiana di Fisica 1

The three body systems of molecular nature have been also studied recently. One of the methods to solve the three-body system is the fixed center approximation (FCA) to the Faddeev equations. In the study of $D\overline{D}K$ system, the FCA has been compared to the variational method and similar results have been found in Refs. [7, 8]. Thus, we use the FCA to study the $D^*D^*\bar{K}^*$ and $\bar{B}^*\bar{B}^*\bar{K}^*$ systems.

2. – Formalism

First, we briefly explain the FCA formalism of the $D^*D^*\bar{K}^*$ system. In this picture, we assumed that there is a cluster of two bound particles D^*D^* , and the third one (\bar{K}^*) collides with the components of this cluster without modifying its wave function. The D^*D^* system was found to be bound with about 4-6 MeV in $I(J^P) = 0(1^+)$ in Ref. [3]. In Fig. 1, we show the corresponding diagrams. The total three-body scattering amplitude *T* is written by the sum of the partition functions T_1 and T_2 . T_1 is the sum of all diagrams in the upper part of Fig. 1 where the \bar{K}^* collides first with the particle 1 of the cluster, while T_2 is the sum of all diagrams in the lower part of Fig. 1 where the \bar{K}^* collides first with the particle 2 of the cluster. We can write as

(1)
$$
T = T_1 + T_2,
$$

$$
T_1 = t_1 + t_1 G_0 T_2,
$$

$$
T_2 = t_2 + t_2 G_0 T_1,
$$

where G_0 is the \overline{K}^* propagator folded with the cluster wave function and t_i is the amplitude for two-body scattering $D^*(i)\overline{K}^*(i=1,2)$. For the evaluation of the two-body *tⁱ* amplitudes, we consider the combination of the isospin and the spin decomposition of the $D^*\bar{K}^*$. We use the $D^*\bar{K}^*$ amplitude in Ref. [5] for the different isospin $I = 0, 1$ and spin $J = 0, 1, 2$. In the $D^*D^*\bar{K}^*$ system, we can have three total spins $J = 0, 1, 2$, and we obtain the final contribution of t_i for different total spin J in Ref. [1]. In addition, we consider the normalization of the amplitudes when mixing two-body amplitudes with three-body amplitudes in the same expression. We replace t_i into $\tilde{t}_i = \frac{m_C}{m_{D^*}} t_i$ with the cluster mass m_C and the D^* mass m_{D^*} , thus Eq. (1) leads to

(2)
$$
\tilde{T}_1 = \tilde{t}_1 + \tilde{t}_1 \tilde{G}_0 \tilde{T}_1; \quad \tilde{T}_1 = \frac{1}{\tilde{t}_1^{-1} - \tilde{G}_0}; \qquad \tilde{T} = \tilde{T}_1 + \tilde{T}_2 = 2\tilde{T}_1,
$$

where we used $t_1 = t_2$, then $T_1 = T_2$. We plot $|\tilde{T}|^2$ for the three-body invariant mass energy \sqrt{s} and we look for the peaks to deduce the mass and width of the bound states.

In the \bar{B} ^{*} \bar{B} ^{*} \bar{K} **^{*}**</sup> system, it was found that the \bar{B} ^{*} \bar{B} ^{*} in $I(J^P) = 0(1^+)$ was bound with a binding energy of about 40 MeV in Ref. [4]. In addition, the $\bar{B}^*\bar{K}^*$ was also found to be strongly attractive in Ref. [6]. Thus, we perform a similar calculation to the *D*[∗]*D*^{***}*K*^{*}.

3. – Numerical results and discussions

In Fig. 2, we show the calculated three-body amplitude $|\tilde{T}|^2$ for the $D^*D^*\bar{K}^*$ system as a function of the three-body invariant mass energy \sqrt{s} . For the total spin $J = 0$, we find a clear peak around 4845 MeV, about 61 MeV below the $D^*D^*\bar{K}^*$ threshold. The width is about 80 MeV. The D^*D^* state is bound by about 4–6 MeV, while the $D^*\bar{K}^*$

Fig. 1. – Diagrams involved in the Fixed center approximation (FCA) for the collision of the \overline{K}^* with the cluster of D^*D^* .

state, corresponding to the $X_0(2900)$, is bound by about 30 MeV. This means that the interaction of \bar{K}^* with two D^* would lead to a binding about twice as big as that of $D^* \overline{K}^*$. We also calculated the wave function for the \overline{K}^* in the $D^* D^* \overline{K}^*$ system at rest in Ref. [1]. We found that the mean square radius is about 1 fm, which is larger than the mean square radius of the proton, 0.84 fm, and smaller than that of the deuteron, 2.1 fm. For the total spin $J = 1, 2$, we can see two peaks indicating two states. We can easily trace the origin of the peaks from the $D^*\bar{K}^*$ amplitude t_i as discussed in Ref. [1]. This is because the calculation of the three-body total spin $J = 1$ is tied to the $J = 0, 1, 2$ of $D^* \overline{K}^*$. On the other hand, the calculation of the total spin $J = 0$ appears as one peak because it has only $J = 1$ of $D^* \overline{K}^*$. Thus, in total, we find five states for the total spin

Fig. 2. – The three-body amplitude $|\tilde{T}|^2$ for the $D^*D^*\bar{K}^*$ system as a function of the three-body invariant mass energy \sqrt{s} for the different total spin *J*. The dotted vertical line indicates the $D^*D^*\bar{K}^*$ threshold $(2m_{D^*} + m_{\bar{K}^*})$.

 $J = 0, 1, 2$ and summarize their binding energy and width in Table I (upper).

In Table I (lower), we summarize the binding energy and width for the three-body systems \bar{B} ^{*} \bar{B} ^{*} \bar{K} ^{*} obtained. In the \bar{B} ^{*} \bar{B} ^{*} \bar{K} ^{*} system, one bound state is obtained for each *J*, which is different from the case of the $D^*D^*\bar{K}^*$ system. This is the effect of an overlap of the different states due to the \bar{B} ^{*} \bar{K} ^{*} large width. We also find that the binding energy and width for the \bar{B} ^{*} \bar{B} ^{*} \bar{K} ^{*} are relatively larger than those of the $D^*D^*\bar{K}$ ^{*}.

TABLE I. – *The calculated binding (B), width (T) of the three-body systems* $D^*D^*\bar{K}^*$ *and B*¯*∗B*¯*∗K*¯ *[∗] states for the different possible total spins J. The binding energy B is obtained with* respect to the threshold energy, $2m_{D^*} + m_{\bar{K}^*}$ and $2m_{\bar{B}^*} + m_{\bar{K}^*}$ for $D^*D^*\bar{D}^*\bar{K}^*$ and $\bar{B}^*\bar{B}^*\bar{K}^*$ *respectively. Numbers are taken from Refs. [1] and [2].*

J	[MeV] В	Γ [MeV]	
0	61	80	
	56	94	
	152	100	
	66	85	
2 (State II)	151	100	
0	$109 - 150$	$72 - 104$	
	$118 - 158$	$106 - 153$	
$\overline{2}$	$130 - 174$	$103 - 149$	
	1 (State I) 1 (State II) 2 (State I)		

4. – Conclusion

We have reported the theoretical study of a search for possible bound states of the three-body systems $D^*D^*\bar{K}^*$ and $\bar{B}^*\bar{B}^*\bar{K}^*$ based on Refs. [1] and [2]. The D^*D^* and \bar{B} ^{*} \bar{B} ^{*} interactions with *I*(*J*^{*P*}) = 0(1⁺) were found to bind, and the *D*^{*} \bar{K} ^{*} and \bar{B} ^{*} \bar{K} ^{*} interactions were also found to be attractive. For this, we applied the fixed center approximation (FCA) to Faddeev equations where the \overline{K}^* interact with each of the particles in the D^*D^* and $\bar{B}^*\bar{B}^*$ cluster. From the numerical results, we found that the bound states obtained have relatively large binding energy for different total spin $J = 0, 1, 2$. Thus, we hope that these exotic mesons, with open strange and doublecharm(bottom) flavors, can be experimentally found in the near future.

∗ ∗ ∗

This work was partly supported by JSPS KAKENHI Grant Number JP P19K14709.

REFERENCES

- [1] Ikeno N., Bayar M. and Oset E., *Phys. Rev. D*, **107** (2023) 034006; doi:10.1103/PhysRevD.107.034006.
- [2] Bayar M., Ikeno N. and Roca L., *Phys. Rev. D*, **107** (2023) 054042; doi:10.1103/PhysRevD.107.054042
- [3] Dai L. R., Molina R. and Oset E., *Phys. Rev. D*, **105** (2022) 016029; doi:10.1103/PhysRevD.105.016029
- [4] Dai L. R., Oset E., Feijoo A., Molina R., Roca L., Torres A. M. and Khemchandani K. P., *Phys. Rev. D*, **105** (2022) 074017; [erratum: Phys. Rev. D **106** (2022), 099904]; doi:10.1103/PhysRevD.105.074017
- [5] Molina R. and Oset E., *Phys. Lett. B*, **811** (2020) 135870; doi:10.1016/j.physletb.2020.135870
- [6] Oset E. and Roca L., *Eur. Phys. J. C*, **82** (2022) 882; [erratum: Eur. Phys. J. C **82** (2022), 1014]; doi:10.1140/epjc/s10052-022-10850-8
- [7] Wu T. W., Liu M. Z. and Geng L. S., *Phys. Rev. D*, **103** (2021) L031501; doi:10.1103/PhysRevD.103.L031501
- [8] Wei X., Shen Q. H. and Xie J. J., *Eur. Phys. J. C*, **82** (2022) 718; doi:10.1140/epjc/s10052-022-10675-5