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Sill distribution: genesis and salient features
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Summary. — We present the so-called Sill distribution, both in the nonrelativistic
and relativistic cases, as a natural and simple way to include the effect of threshold(s)
on the energy line shapes of resonances. The Sill is correctly normalized (even for
broad states), is continuous at threshold(s), does not require any modification to
the ‘mass part’, is easily extendable to the multichannel case, and can be applied to
both mesons and baryons. Here, as a novel example, we employ the Sill to describe
the resonance ψ(3770).

The description of line shapes (or energy distributions) of unstable states is an impor-
tant element of both Quantum mechanics (QM) and Quantum Field Theory (QFT) [1].
This is especially true for the study of short-lived hadrons, in which broad states with
relatively close thresholds are quite common [2]. The aim of this work is to present the
genesis and the main properties of a relatively simple distribution, called Sill distribution,
originally put forward in Ref. [3].

The famous Breit-Wigner (BW) distribution [4, 5] (see also [6] for modern applica-
tions),

(1) dBW(E) =
Γ

2π

[
(E −M)2 +

Γ2

4

]−1

,

describes (in the non-relativistic limit) the line shape of a resonance with mass M and

decay width Γ that fulfills the normalization
∫ +∞
−∞ dEdBW(E) = 1. According to BW, any

energy in the range (−∞,+∞) is admissible, what is clearly a nonphysical feature since
any physical system has a minimal ‘threshold’ energy Eth, being the energy of the ground

(∗) francesco.giacosa@gmail.com
(∗∗) vanamalishastry@gmail.com
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state (Eth ≥ 0 in QFT with Eth = 0 only if all the decay products of the resonance are
massless particles). One may include this feature by a simple rescaling

(2) dBW(E) → NdBW(E)θ(E − Eth),

where θ(E) is the step function and N ≥ 1 is necessary to cure the loss of normalization.
While this procedure may be a good strategy in certain applications, it is clear that it
does not follow from a rigorous treatment of the problem.

In general, the proper inclusion of the decay in a quantum context implies the calcu-
lation of the self-energy Π(E) describing the process ‘state → decay products → state’
leading to

(3) d(E) =
ImΠ(E)

π

[
(E −M +ReΠ(E))2 + ImΠ(E)2

]−1
,

where Γ(E) = 2 ImΠ(E) is the energy-dependent width. Indeed, d(E) = − 1
π Im[G(E)],

with G(E) = (E −M + Π(E) + iε)−1 being the propagator of the unstable state. The

normalization
∫ +∞
Eth

dEd(E) = 1 is valid in general [7].

For the actual calculation of the loop function Π(E), one needs a microscopic model
that couples the unstable states to its decay products (it could be in the form of Lee-
Friedrichs Hamiltonian, e.g. [8, 9, 10]). Often, what is actually known (or assumed) is
the function Γ(E), thus Π(E) (for complex E) can be reconstructed by the dispersion
relation:

(4) Π(E) = − 1

2π

∫ Λ

Eth

Γ(E′)

E′ − E + iε
dE′ + C ,

where Λ is a high-energy cutoff (to be sent to ∞) and C is a real subtraction constant
that guarantees that the mass M remains unchanged (that is, ReΠ(M) = 0; note, for E
real, ReΠ(E) reduces to the principal part of the integral above).

First, we apply this procedure to the choice Γ(E) = Γθ(E−Eth), which is the simplest
extension of BW upon introducing a threshold. The resulting spectral function reads

(5) d(E) =
Γ

2π

[(
E −M +

Γ

2π
ln

(
E − Eth

M − Eth

))2

+
Γ2

4

]−1

θ(E − Eth) ,

which is correctly normalized, but contains a logarithm in the mass part of the distribu-
tion as well as an unphysical behavior at threshold due to the abrupt jump of the decay
width at that value. Neglecting the log-term would spoil the normalization and bring
back to Eq. 2. In the limit Eth → −∞ the BW-limit is, as expected, recovered.

As discussed in [3], the simple choice

(6) Γ(E) = γ
√
E − Ethθ(E − Eth)

with γ being a constant (γ = Γ/
√
M − Eth), leads to the nonrelativistic Sill distribution

(7) dnrSill(E) =
γ
√
E − Eth

2π

[
(E −M)2 +

1

4

(
γ
√
E − Eth

)2
]−1

θ(E − Eth) ,
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which is correctly normalized to one for any value of the involved parameters (as long as
M > Eth). Since ReΠ(E) vanishes above Eth, the Sill does not contain any modification
to the ‘mass part’ of the spectral function. Moreover, it describes the left threshold
without abrupt jumps. The on-shell width is obtained as Γ ≡ Γ(M) = γ

√
M − Eth.

In order to discuss the relativistic case, we need to perform the replacements E →
s = E2 (as well as M → M2 and Eth → sth ≥ 0 for the lowest energy threshold), and
Π(E) → Π(s) with ImΠ(s) =

√
sΓ(s). Thus, in analogy to the QM case, an unstable

resonance is described by

(8) d(s) =
ImΠ(s)

π

[
(s−M2 +ReΠ(s))2 + ImΠ(s)2

]−1
,

which is correctly normalized,
∫ +∞
sth

dEd(s) = 1. Moreover, d(s) = − 1
π Im[G(s)] with the

relativistic propagator G(s) = (s−M2 +Π(s) + iε)−1. The loop function Π(s) reads

(9) Π(s) = − 1

π

∫ Λ2

sth

√
s′Γ(s′)

s′ − s+ iε
dE′ + C

where C is chosen such that ReΠ(M2) = 0, thus the nominal mass is left unchanged.

The relativistic Sill distribution corresponds to the choice Γ(s) = Γ̃
√
(s− sth)/s,

leading to

(10) dSill(s) =
Γ̃
√
s− sth
π

[
(s−M2)2 + Γ̃2 (s− sth)

]−1

θ(s− sth) .

It is normalized to unity for any choice of M and Γ̃, the left-threshold is taken into
account, ReΠ(s) = 0 above sth, thus making it quite simple to use. Moreover, the
width function Γ(s) reduces to a constant for large values of s, thus heuristically one
may consider the Sill distribution as the proper extension of the BW function to the
relativistic case. This is also evident in the limit sth = 0, for which Γ(s) = Γ̃ is a
constant.

Various comments are important at this point:
1) For a two-body decay into particles with masses m1 and m2, one sets sth = (m1 +

m2)
2. In general, the Sill is different from the Flatté distribution [11] (see also e.g.

[12, 13]) for which ImΠ(s) ∼ k(s) with k(s) being the momentum.
2) Extension to the multichannel case and to decay chains is straightforward [3]. The

Sill can be applied to both mesons and baryons.
3) One may obtain the relativistic BW (rBW) distribution by setting ImΠ(s) =

MΓθ(s) (a left threshold must exist in QFT). Interestingly, this corresponds to a non-
constant width of the type Γ(s) = ΓM/

√
s. The resulting distribution

(11) d(s) =
ΓM

π

[(
s−M2 +

ΓM

π
ln

(
s/M2

))2

+ (ΓM)
2

]−1

θ(s)

reduces to drBW(s) = N ΓM
π

[(
s−M2

)2
+ (ΓM)

2
]−1

θ(s) when the log-term is neglected

(see e.g. [15] for applications).
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Fig. 1. – The e+e− → DD̄ data reported by BES (Table 2 of Ref. [16]) fitted with the Sill
distribution (χ2 per d.o.f is 1.59). The mass and width of ψ(3770) obtained from the fit are
shown at the bottom of the figure.

4) Although all distributions are peaked at the mass M , the high-E scaling are quite
different. BW scales as E−2 , the nrSill goes as E−3/2 , the rBW as E−3 and the Sill as
E−2, as BW. (Note, due to the variable change s = E2, one has dSill(E) = 2EdSill(s =
E2)).

5) In the complex plane, the Sill loop Π(s) = iΓ̃
√
s− sth in the first Riemann

sheet (RS) contains a (sth,∞)-cut. In the II RS, ΠII(s) = Π(s) + 2iΓ̃(
√
s− sth)II =

−iΓ̃
√
s− sth has a similar feature. While BW contains only one sheet, the Sill has a

richer and more realistic (although not complete, see below) analytic structure.
6) An actual scalar QFT of the type L = gSφ2 leads to the decay width Γ(s) =

g2√s−sth
8πs [14], where sth = 4m2, with m being the φ mass. This expression has different

analytical properties with respect to the Sill in Eq. 10. The self-energy takes the form:

(12) Π(s) =
g2
√
s− sth

8π
√
s

ln

(√
s− sth −

√
s√

s− sth +
√
s

)
+ C .

In the I Riemann sheet it has a cut on the real axis that extends from sth to∞ (note, s < 0
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is, thanks to the log-function, regular). In the II RS, ΠII(s) = Π(s) + 2i
g2

(√
s(s−sth)

)
II

8πs ,
which contains also a branch cut on the negative s-axis, a feature not contemplated in
the Sill. In this sense, the Sill simplifies certain analytic properties, but still retains the
most important ones.

In Ref. [3] various examples of resonances described via the Sill were presented. Here,
as a novel one, the line shape of the charmonium resonance ψ(3770), with one dominating
D̄D decay channel, is plotted in Fig. 1,. The mass and width of ψ(3770) are obtained
as m = 3.774 GeV and Γ = 30.1 MeV respectively, in good agreement with the PDG
values. To arrive at these values, we fit the Sill distribution the data reported by BES
collaboration (Table 2 of Ref. [16]) along with a normalization constant that takes care
of the phase space factors. Quite remarkably, the Sill fits as well as the complete loop
treatment of this resonance discussed in [17] (to which we refer for connecting the cross
section to the spectral function)

Meanwhile, the Sill has been already used in the review paper for the description of
the ∆ baryon [18] as well as by the Alice collaboration [19] for the description of the
baryon state Ξ(1620) (see also [20]). In the future, one may search for Sill extensions
that are better suited to describe higher angular momentum waves [21] and to three-body
decay rates (see, Ref. [22] for a phenomenological exposition).
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